A Study of Bias Correction Methods for Enhancing Median Edge Detector Prediction

T. Hai-jiang, K. Sei-ichiro, T. Kazuyuki
{"title":"A Study of Bias Correction Methods for Enhancing Median Edge Detector Prediction","authors":"T. Hai-jiang, K. Sei-ichiro, T. Kazuyuki","doi":"10.1109/MMSP.2005.248614","DOIUrl":null,"url":null,"abstract":"In this paper, we present three novel lossless compression approaches for gray-scale continuous tone natural image. Our methods enhance the median edge detector (MED), which is the core part of JPED-LS algorithm, by reducing the entropy of the prediction error via adaptive regression. These modified predictors improve the prediction accuracy by reducing the negative effect due to MED's oversimplified edge orientation detection. The experimental results show that our approaches achieve evidently better performance than MED with only neglectable increasing of computational complexity and without introduce extra pixels into the causal template","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present three novel lossless compression approaches for gray-scale continuous tone natural image. Our methods enhance the median edge detector (MED), which is the core part of JPED-LS algorithm, by reducing the entropy of the prediction error via adaptive regression. These modified predictors improve the prediction accuracy by reducing the negative effect due to MED's oversimplified edge orientation detection. The experimental results show that our approaches achieve evidently better performance than MED with only neglectable increasing of computational complexity and without introduce extra pixels into the causal template
增强中值边缘检测器预测的偏置校正方法研究
本文提出了三种新的灰度连续色调自然图像无损压缩方法。我们的方法通过自适应回归降低预测误差的熵值,增强了JPED-LS算法的核心——中值边缘检测器(MED)。这些改进的预测器通过减少由于MED过于简化的边缘方向检测而产生的负面影响来提高预测精度。实验结果表明,我们的方法取得了明显优于MED的性能,计算复杂度的增加可以忽略不计,并且不需要在因果模板中引入额外的像素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信