Mind the Noise Covariance When Localizing Brain Sources with M/EEG

D. Engemann, D. Strohmeier, E. Larson, Alexandre Gramfort
{"title":"Mind the Noise Covariance When Localizing Brain Sources with M/EEG","authors":"D. Engemann, D. Strohmeier, E. Larson, Alexandre Gramfort","doi":"10.1109/PRNI.2015.25","DOIUrl":null,"url":null,"abstract":"Magneto encephalography (MEG) and electroen-cephalography (EEG) are imaging methods that measure neuronal dynamics non invasively with high temporal precision. It is often desired in MEG and EEG analysis to estimate the neural sources of the signals. Strategies used for this purpose often take into account the covariance between sensors to yield more precise estimates of the sources. Here we investigate in greater detail how the quality of such covariance estimates conditions the estimation of MEG and EEG sources. We investigated three distinct source localization methods: dynamic Statistical Parametric Maps (dSPM), the linearly constrained minimum variance (LCMV) beam former and Mixed-Norm Estimates (MxNE). We implemented and evaluated automated strategies for improving the quality of covariance estimates at different stages of data processing. Our results show that irrespective of the source localization method, accuracy can suffer from improper covariance estimation but can be improved by relying on automated regularization of covariance estimates.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Magneto encephalography (MEG) and electroen-cephalography (EEG) are imaging methods that measure neuronal dynamics non invasively with high temporal precision. It is often desired in MEG and EEG analysis to estimate the neural sources of the signals. Strategies used for this purpose often take into account the covariance between sensors to yield more precise estimates of the sources. Here we investigate in greater detail how the quality of such covariance estimates conditions the estimation of MEG and EEG sources. We investigated three distinct source localization methods: dynamic Statistical Parametric Maps (dSPM), the linearly constrained minimum variance (LCMV) beam former and Mixed-Norm Estimates (MxNE). We implemented and evaluated automated strategies for improving the quality of covariance estimates at different stages of data processing. Our results show that irrespective of the source localization method, accuracy can suffer from improper covariance estimation but can be improved by relying on automated regularization of covariance estimates.
M/EEG定位脑源时注意噪声协方差
脑磁图(MEG)和脑电图(EEG)是一种非侵入性、时间精度高的神经元动态测量成像方法。在脑电信号和脑电信号分析中,通常需要估计信号的神经源。用于此目的的策略通常考虑传感器之间的协方差,以产生更精确的源估计。在这里,我们更详细地研究了这种协方差估计的质量如何影响对MEG和EEG源的估计。我们研究了三种不同的源定位方法:动态统计参数映射(dSPM)、线性约束最小方差(LCMV)波束形成和混合范数估计(MxNE)。我们实施并评估了在数据处理的不同阶段提高协方差估计质量的自动化策略。我们的研究结果表明,无论采用何种源定位方法,精度都可能受到不正确的协方差估计的影响,但依靠协方差估计的自动正则化可以提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信