Supervised learning on large redundant training sets

M. F. Møller
{"title":"Supervised learning on large redundant training sets","authors":"M. F. Møller","doi":"10.1109/NNSP.1992.253705","DOIUrl":null,"url":null,"abstract":"A novel algorithm combining the good properties of offline and online algorithms is introduced. The efficiency of supervised learning algorithms on small-scale problems does not necessarily scale up to large-scale problems. The redundancy of large training sets is reflected as redundancy gradient vectors in the network. Accumulating these gradient vectors implies redundant computations. In order to avoid these redundant computations a learning algorithm has to be able to update weights independently of the size of the training set. The stochastic learning algorithm proposed, the stochastic scaled conjugate gradient (SSCG) algorithm, has this property. Experimentally, it is shown that SSCG converges faster than the online backpropagation algorithm on the nettalk problem.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel algorithm combining the good properties of offline and online algorithms is introduced. The efficiency of supervised learning algorithms on small-scale problems does not necessarily scale up to large-scale problems. The redundancy of large training sets is reflected as redundancy gradient vectors in the network. Accumulating these gradient vectors implies redundant computations. In order to avoid these redundant computations a learning algorithm has to be able to update weights independently of the size of the training set. The stochastic learning algorithm proposed, the stochastic scaled conjugate gradient (SSCG) algorithm, has this property. Experimentally, it is shown that SSCG converges faster than the online backpropagation algorithm on the nettalk problem.<>
大型冗余训练集上的监督学习
介绍了一种结合离线算法和在线算法优点的新算法。监督学习算法在小规模问题上的效率并不一定能扩展到大规模问题。大型训练集的冗余在网络中表现为冗余梯度向量。累积这些梯度向量意味着冗余计算。为了避免这些冗余计算,学习算法必须能够独立于训练集的大小来更新权重。提出的随机学习算法——随机缩放共轭梯度(SSCG)算法就具有这一特性。实验结果表明,SSCG算法比在线反向传播算法在nettalk问题上收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信