Revisit to Floating-Point Division Algorithm Based on Taylor-Series Expansion

Jianglin Wei, A. Kuwana, Haruo Kobayashi, K. Kubo
{"title":"Revisit to Floating-Point Division Algorithm Based on Taylor-Series Expansion","authors":"Jianglin Wei, A. Kuwana, Haruo Kobayashi, K. Kubo","doi":"10.1109/APCCAS50809.2020.9301675","DOIUrl":null,"url":null,"abstract":"This paper investigates floating-point division algorithms based on Taylor-series expansion. Taylor-series expansions of 1/x are examined for several center points with their convergence ranges, and show the Taylor-series expansion division algorithm trade-offs among division accuracy, numbers of multiplications/additions/subtractions and LUT sizes; the designer can choose the optimal algorithm for his digital division, and build its conceptual architecture design with the contents described here.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates floating-point division algorithms based on Taylor-series expansion. Taylor-series expansions of 1/x are examined for several center points with their convergence ranges, and show the Taylor-series expansion division algorithm trade-offs among division accuracy, numbers of multiplications/additions/subtractions and LUT sizes; the designer can choose the optimal algorithm for his digital division, and build its conceptual architecture design with the contents described here.
基于泰勒级数展开的浮点除法算法述评
本文研究了基于泰勒级数展开的浮点除法算法。研究了1/x的若干中心点及其收敛范围的泰勒级数展开式,并展示了泰勒级数展开式除法算法在除法精度、乘法/加法/减法数量和LUT大小之间的权衡;设计人员可以为自己的数字除法选择最优算法,并根据本文介绍的内容进行概念架构设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信