Situational Portfolio Forecasting and Allocation with Deep-Learning Approach

Mrityunjay Joshi, Amol Deshpande, D. Ambawade
{"title":"Situational Portfolio Forecasting and Allocation with Deep-Learning Approach","authors":"Mrityunjay Joshi, Amol Deshpande, D. Ambawade","doi":"10.1109/CSCITA55725.2023.10104979","DOIUrl":null,"url":null,"abstract":"Portfolio optimization is selecting the best set of possible weights for a group of assets where the objective is to maximize the returns and risk-return ratio and minimize the risks and volatility. This research aims to develop and test ARIMA and LSTM as forecasting techniques and subsequently perform portfolio optimization using a custom optimization methodology leveraging the forecasted returns from the models mentioned earlier. The intention is to develop a portfolio that dynamically allocates weights to the assets for the optimum investment strategy. The portfolio considers an initial investment of 100 units of currency, allowing uncomplicated interpretation of results and data.","PeriodicalId":224479,"journal":{"name":"2023 International Conference on Communication System, Computing and IT Applications (CSCITA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Communication System, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA55725.2023.10104979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Portfolio optimization is selecting the best set of possible weights for a group of assets where the objective is to maximize the returns and risk-return ratio and minimize the risks and volatility. This research aims to develop and test ARIMA and LSTM as forecasting techniques and subsequently perform portfolio optimization using a custom optimization methodology leveraging the forecasted returns from the models mentioned earlier. The intention is to develop a portfolio that dynamically allocates weights to the assets for the optimum investment strategy. The portfolio considers an initial investment of 100 units of currency, allowing uncomplicated interpretation of results and data.
基于深度学习方法的情景组合预测与配置
投资组合优化是为一组资产选择可能的最佳权重集,其目标是最大化收益和风险回报比,最小化风险和波动性。本研究旨在开发和测试ARIMA和LSTM作为预测技术,并随后使用利用先前提到的模型预测收益的自定义优化方法进行投资组合优化。其目的是开发一个投资组合,动态地为最佳投资策略的资产分配权重。该投资组合考虑100单位货币的初始投资,允许对结果和数据进行简单的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信