Reducing and linking spatio-temporal datasets with kD-STR

L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank
{"title":"Reducing and linking spatio-temporal datasets with kD-STR","authors":"L. Steadman, N. Griffiths, S. Jarvis, M. Bell, Shaun Helman, Caroline Wallbank","doi":"10.1145/3423455.3430317","DOIUrl":null,"url":null,"abstract":"When linking spatio-temporal datasets, the kD-STR algorithm can be used to reduce the datasets and speed up the linking process. However, kD-STR can sacrifice accuracy in the linked dataset whilst retaining unnecessary information. To overcome this, we propose a preprocessing step that removes unnecessary information and an alternative heuristic for kD-STR that prioritises accuracy in the linked output. These are evaluated in a case study linking a road condition dataset with air temperature, rainfall and road traffic data. In this case study, we found the alternative heuristic achieved a 19% improvement in mean error for the linked air temperature features and an 18% reduction in storage used for the rainfall dataset compared to the original kD-STR heuristic. The results in this paper support our hypothesis that, at worse, our alternative heuristic will yield a similar error and storage overhead for linking scenarios as the original kD-STR heuristic. However, in some cases it can give a reduction that is more accurate when linking the datasets whilst using less storage than the original kD-STR algorithm.","PeriodicalId":320377,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423455.3430317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When linking spatio-temporal datasets, the kD-STR algorithm can be used to reduce the datasets and speed up the linking process. However, kD-STR can sacrifice accuracy in the linked dataset whilst retaining unnecessary information. To overcome this, we propose a preprocessing step that removes unnecessary information and an alternative heuristic for kD-STR that prioritises accuracy in the linked output. These are evaluated in a case study linking a road condition dataset with air temperature, rainfall and road traffic data. In this case study, we found the alternative heuristic achieved a 19% improvement in mean error for the linked air temperature features and an 18% reduction in storage used for the rainfall dataset compared to the original kD-STR heuristic. The results in this paper support our hypothesis that, at worse, our alternative heuristic will yield a similar error and storage overhead for linking scenarios as the original kD-STR heuristic. However, in some cases it can give a reduction that is more accurate when linking the datasets whilst using less storage than the original kD-STR algorithm.
基于kD-STR的时空数据集缩减与链接
在链接时空数据集时,采用kD-STR算法可以减少数据集,加快链接速度。然而,kD-STR可能会牺牲链接数据集的准确性,同时保留不必要的信息。为了克服这个问题,我们提出了一个预处理步骤,删除不必要的信息,并为kD-STR提出了一个替代启发式方法,优先考虑链接输出的准确性。在将道路状况数据集与气温、降雨量和道路交通数据联系起来的案例研究中,对这些因素进行了评估。在本案例研究中,我们发现与原始kD-STR启发式方法相比,替代启发式方法在相关气温特征的平均误差方面提高了19%,并且用于降雨数据集的存储减少了18%。本文的结果支持我们的假设,即在最坏的情况下,我们的替代启发式将产生与原始kD-STR启发式相似的错误和存储开销。然而,在某些情况下,当使用比原始kD-STR算法更少的存储空间连接数据集时,它可以给出更准确的缩减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信