{"title":"Model Specification Testing for Nonlinear Multivariate Cointegrating Regressions","authors":"Chaohua Dong, Jiti Gao, D. Tjøstheim, Jiying Yin","doi":"10.2139/ssrn.2396967","DOIUrl":null,"url":null,"abstract":"This paper considers a general model specification test for nonlinear multivariate cointegrating regressions where the regressor consists of a univariate integrated time series and a vector of stationary time series. The regressors and the errors are generated from the same innovations, so that the model accommodates endogeniety. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2396967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers a general model specification test for nonlinear multivariate cointegrating regressions where the regressor consists of a univariate integrated time series and a vector of stationary time series. The regressors and the errors are generated from the same innovations, so that the model accommodates endogeniety. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.