Text detection in Arabic news video based on MSER and RetinaNet

Sadek Mansouri, Salah Zrigui, M. Zrigui, Dhaou Berchech
{"title":"Text detection in Arabic news video based on MSER and RetinaNet","authors":"Sadek Mansouri, Salah Zrigui, M. Zrigui, Dhaou Berchech","doi":"10.1109/AICCSA53542.2021.9686930","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach for text detection in Arabic news videos. Firstly, we apply MSER method and morphological operators (open and close) to extract candidate regions of text in image. Then, we use a deep learning method called RatinaNet. It is based in two stages. The first one aims to extract features using residual network (ResNet) and a pyramidal feature network (FPN). In the second step, we use two fully convolutional networks (FCN), one is for the classification task and the other for the bounding box regression task. For training and testing stages, we have used the AcTiVD [18] dataset. Experiments results proves the efficiency and performance of the proposed method.","PeriodicalId":423896,"journal":{"name":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA53542.2021.9686930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a novel approach for text detection in Arabic news videos. Firstly, we apply MSER method and morphological operators (open and close) to extract candidate regions of text in image. Then, we use a deep learning method called RatinaNet. It is based in two stages. The first one aims to extract features using residual network (ResNet) and a pyramidal feature network (FPN). In the second step, we use two fully convolutional networks (FCN), one is for the classification task and the other for the bounding box regression task. For training and testing stages, we have used the AcTiVD [18] dataset. Experiments results proves the efficiency and performance of the proposed method.
基于MSER和retanet的阿拉伯语新闻视频文本检测
本文提出了一种新的阿拉伯语新闻视频文本检测方法。首先,应用MSER方法和形态学算子(开闭)提取图像中文本的候选区域;然后,我们使用一种叫做RatinaNet的深度学习方法。它基于两个阶段。第一个目标是使用残差网络(ResNet)和金字塔特征网络(FPN)提取特征。在第二步中,我们使用两个全卷积网络(FCN),一个用于分类任务,另一个用于边界盒回归任务。对于训练和测试阶段,我们使用了AcTiVD[18]数据集。实验结果证明了该方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信