DoA Estimation in the Presence of Mutual Coupling Using Root-MUSIC Algorithm

Cihad Sinan Ateşavcı, Y. Bahadirlar, Sultan Aldirmaz-Çolak
{"title":"DoA Estimation in the Presence of Mutual Coupling Using Root-MUSIC Algorithm","authors":"Cihad Sinan Ateşavcı, Y. Bahadirlar, Sultan Aldirmaz-Çolak","doi":"10.1109/ICEEE52452.2021.9415938","DOIUrl":null,"url":null,"abstract":"The effect of unknown mutual coupling in receiving array seriously degrades the performance of direction-of-arrival (DoA) estimation algorithms. In order to compensate this effect, this paper develops an auto-calibration method for the uniform linear array (ULA) based on Root-MUltiple SIgnal Classification (MUSIC) algorithm. The proposed method can estimate the DoAs of the received signal and mutual coupling coefficients using the subspace principle without using any calibration source. Moreover, it can reduce computational complexity due to analytically estimating DoA without any spectrum search. In this paper, Monte-Carlo simulation is used to elucidate the errors in DoA and coupling parameter estimation. Cramer-Rao lower bound (CRB) is also presented to support the estimation results. Simulation results illustrate that the proposed Friedlander & Weiss (F&W) Root-MUSIC method efficiently estimates the DoA and mutual coupling coefficients, and also the performance of F&W Root-MUSIC is better than F&W MUSIC algorithm's.","PeriodicalId":429645,"journal":{"name":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE52452.2021.9415938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The effect of unknown mutual coupling in receiving array seriously degrades the performance of direction-of-arrival (DoA) estimation algorithms. In order to compensate this effect, this paper develops an auto-calibration method for the uniform linear array (ULA) based on Root-MUltiple SIgnal Classification (MUSIC) algorithm. The proposed method can estimate the DoAs of the received signal and mutual coupling coefficients using the subspace principle without using any calibration source. Moreover, it can reduce computational complexity due to analytically estimating DoA without any spectrum search. In this paper, Monte-Carlo simulation is used to elucidate the errors in DoA and coupling parameter estimation. Cramer-Rao lower bound (CRB) is also presented to support the estimation results. Simulation results illustrate that the proposed Friedlander & Weiss (F&W) Root-MUSIC method efficiently estimates the DoA and mutual coupling coefficients, and also the performance of F&W Root-MUSIC is better than F&W MUSIC algorithm's.
基于根- music算法的互耦合DoA估计
接收阵列中未知相互耦合的影响严重降低了到达方向估计算法的性能。为了弥补这一影响,本文提出了一种基于根多倍信号分类(MUSIC)算法的均匀线性阵列(ULA)自动校准方法。该方法可以在不使用任何标定源的情况下,利用子空间原理估计接收信号的doa和互耦系数。此外,该方法不需要进行频谱搜索,可以通过分析方法估计DoA,从而降低了计算复杂度。本文采用蒙特卡罗仿真的方法对DoA和耦合参数估计的误差进行了分析。提出了Cramer-Rao下界(CRB)来支持估计结果。仿真结果表明,本文提出的Friedlander & Weiss (F&W) Root-MUSIC方法能够有效估计DoA和互耦合系数,并且F&W Root-MUSIC算法的性能优于F&W MUSIC算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信