Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number System

N. Chervyakov, P. Lyakhov, M. Valueva, G. Valuev, D. Kaplun, G. Efimenko, D. V. Gnezdilov
{"title":"Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number System","authors":"N. Chervyakov, P. Lyakhov, M. Valueva, G. Valuev, D. Kaplun, G. Efimenko, D. V. Gnezdilov","doi":"10.23919/FRUCT.2018.8588106","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system.","PeriodicalId":183812,"journal":{"name":"2018 23rd Conference of Open Innovations Association (FRUCT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2018.8588106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system.
基于剩余数系统的极简卷积神经网络的面积高效FPGA实现
卷积神经网络(CNN)是解决计算机视觉系统中图像识别任务的一个很有前途的工具。然而,大多数已知的cnn实现需要大量的内存来存储训练和工作中的权重。为了降低CNN实现的资源成本,我们提出了硬件和软件分离的架构,以实现性能优化。在实现CNN卷积层的硬件部分,提出了残数系统(RNS)算法。使用Matlab 2017b进行的软件仿真表明,最少层数的CNN可以快速成功训练。基于FPGA Kintex7 xc7k70tfbg484-2的硬件仿真表明,在CNN的卷积层中使用RNS与基于二进制数系统的传统方法相比,硬件成本降低了32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信