An Ontology-Based Recommendation System Using Long-Term and Short-Term Preferences

Jinbeom Kang, Joongmin Choi
{"title":"An Ontology-Based Recommendation System Using Long-Term and Short-Term Preferences","authors":"Jinbeom Kang, Joongmin Choi","doi":"10.1109/ICISA.2011.5772322","DOIUrl":null,"url":null,"abstract":"Personalized information retrieval and recommendation systems have been proposed to deliver the right information to users with different interests. However, most of previous systems are using keyword frequencies as the main factor for personalization, and as a result, they could not analyze semantic relations between words. Also, previous methods often fail to provide the documents that are related semantically with the query words. To solve these problems, we propose a recommendation system which provides relevant documents to users by identifying semantic relations between an ontology that semantically represents the documents crawled by a Web robot and user behavior history. Recommendation is mainly based on content-based similarity, semantic similarity, and preference weights.","PeriodicalId":425210,"journal":{"name":"2011 International Conference on Information Science and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2011.5772322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Personalized information retrieval and recommendation systems have been proposed to deliver the right information to users with different interests. However, most of previous systems are using keyword frequencies as the main factor for personalization, and as a result, they could not analyze semantic relations between words. Also, previous methods often fail to provide the documents that are related semantically with the query words. To solve these problems, we propose a recommendation system which provides relevant documents to users by identifying semantic relations between an ontology that semantically represents the documents crawled by a Web robot and user behavior history. Recommendation is mainly based on content-based similarity, semantic similarity, and preference weights.
基于本体的长期和短期偏好推荐系统
个性化信息检索和推荐系统的提出是为了向不同兴趣的用户提供正确的信息。然而,以往的系统大多将关键词频率作为个性化的主要因素,因此无法分析单词之间的语义关系。此外,以前的方法通常不能提供与查询词在语义上相关的文档。为了解决这些问题,我们提出了一个推荐系统,该系统通过识别语义上表示Web机器人抓取的文档的本体与用户行为历史之间的语义关系,为用户提供相关文档。推荐主要基于基于内容的相似度、语义相似度和偏好权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信