Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guang-Xiong Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu
{"title":"Balancing CPU-GPU Collaborative High-Order CFD Simulations on the Tianhe-1A Supercomputer","authors":"Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guang-Xiong Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu","doi":"10.1109/IPDPS.2014.80","DOIUrl":null,"url":null,"abstract":"HOSTA is an in-house high-order CFD software that can simulate complex flows with complex geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and communication as far as possible. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With our method, we have successfully simulated China's large civil airplane configuration C919 containing 150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-order accurate aerodynamic simulation result with such a complex grid geometry.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
HOSTA is an in-house high-order CFD software that can simulate complex flows with complex geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and communication as far as possible. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With our method, we have successfully simulated China's large civil airplane configuration C919 containing 150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-order accurate aerodynamic simulation result with such a complex grid geometry.