Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes

J. Cepeda, Santiago Chamba
{"title":"Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes","authors":"J. Cepeda, Santiago Chamba","doi":"10.37116/revistaenergia.v16.n1.2019.334","DOIUrl":null,"url":null,"abstract":"Este documento propone una novedosa metodología para la estimación probabilística del modelo estocástico del estado de carga (SOC por su nombre en inglés “State of Charge”) de los sistemas de almacenamiento de energía mediante baterías (BESS por su nombre en inglés “Battery Energy Storage Systems”). La estimación apropiada del SOC es uno de los parámetros más importantes en la planificación de la expansión y operación de las microrredes. Para ello, se estructura una herramienta computacional que enlaza los programas de DIgSILENT PowerFactory y Python. Este aplicativo permite, de forma probabilística, evaluar la operación de la microrred considerando la disponibilidad del recurso primario intermitente de las fuentes de energía renovables y la variabilidad de la demanda eléctrica. Como resultado se determinan los modelos estocásticos del SOC del BESS para cada período de tiempo. La metodología propuesta se aplica a una microrred de prueba que se conecta a la “Barra 6” del sistema de prueba WSCC de tres máquinas y nueve barras, obteniéndose resultados prometedores.","PeriodicalId":234227,"journal":{"name":"Revista Técnica \"energía\"","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Técnica \"energía\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37116/revistaenergia.v16.n1.2019.334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Este documento propone una novedosa metodología para la estimación probabilística del modelo estocástico del estado de carga (SOC por su nombre en inglés “State of Charge”) de los sistemas de almacenamiento de energía mediante baterías (BESS por su nombre en inglés “Battery Energy Storage Systems”). La estimación apropiada del SOC es uno de los parámetros más importantes en la planificación de la expansión y operación de las microrredes. Para ello, se estructura una herramienta computacional que enlaza los programas de DIgSILENT PowerFactory y Python. Este aplicativo permite, de forma probabilística, evaluar la operación de la microrred considerando la disponibilidad del recurso primario intermitente de las fuentes de energía renovables y la variabilidad de la demanda eléctrica. Como resultado se determinan los modelos estocásticos del SOC del BESS para cada período de tiempo. La metodología propuesta se aplica a una microrred de prueba que se conecta a la “Barra 6” del sistema de prueba WSCC de tres máquinas y nueve barras, obteniéndose resultados prometedores.
确定用于计算微电网概率功率流的电池充电状态随机模型
本文提出了一种新的方法来估计电池储能系统(BESS)的随机充电状态模型(SOC)的概率。适当的SOC估计是规划微电网扩建和运行的最重要参数之一。为此,我们构建了一个连接DIgSILENT PowerFactory和Python程序的计算工具。该应用程序允许以概率的方式评估微电网的运行,考虑到可再生能源间歇性一次资源的可用性和电力需求的可变性。结果确定了每个时间段的随机BESS SOC模型。将所提出的方法应用于连接三机九棒WSCC测试系统“6棒”的微电网测试,取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信