On the benefits of classical multidimensional scaling in Epileptic seizure prediction studies

B. Direito, C. Teixeira, A. Dourado
{"title":"On the benefits of classical multidimensional scaling in Epileptic seizure prediction studies","authors":"B. Direito, C. Teixeira, A. Dourado","doi":"10.1109/ENBENG.2011.6026063","DOIUrl":null,"url":null,"abstract":"Algorithms for Epileptic seizure prediction using various features extracted from the multichannel Electroencephalo-graphic (EEG) signals, need to work in high dimensional spaces, leading to increased difficulties in computational time and convergence conditions. Multidimensional Scaling (MDS) is a technique to surpass this curse of dimensionality in classification problems. In this work we investigate the influence of dimensional reduction in classification performance by previously applying Multidimensional Scaling and then applying Support Vector Machines (SVM) to classify the brain state. Data from five patients of the European Database on Epilepsy of the FP7 EPILEPSIAE Project is used. The results show that dimension reduction improves less than expected the SVM performance.","PeriodicalId":206538,"journal":{"name":"1st Portuguese Biomedical Engineering Meeting","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Portuguese Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG.2011.6026063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Algorithms for Epileptic seizure prediction using various features extracted from the multichannel Electroencephalo-graphic (EEG) signals, need to work in high dimensional spaces, leading to increased difficulties in computational time and convergence conditions. Multidimensional Scaling (MDS) is a technique to surpass this curse of dimensionality in classification problems. In this work we investigate the influence of dimensional reduction in classification performance by previously applying Multidimensional Scaling and then applying Support Vector Machines (SVM) to classify the brain state. Data from five patients of the European Database on Epilepsy of the FP7 EPILEPSIAE Project is used. The results show that dimension reduction improves less than expected the SVM performance.
经典多维标度在癫痫发作预测研究中的应用
利用从多通道脑电图信号中提取的各种特征来预测癫痫发作的算法需要在高维空间中工作,这增加了计算时间和收敛条件的困难。多维尺度(MDS)是在分类问题中克服维数限制的一种技术。在这项工作中,我们研究了降维对分类性能的影响,首先使用多维尺度,然后使用支持向量机(SVM)对大脑状态进行分类。数据来自FP7 Epilepsy siae项目的欧洲癫痫数据库的5名患者。结果表明,降维对支持向量机性能的改善程度低于预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信