Resolving IEEE floating-point error using precision-based rounding algorithm

M. A. Awan, M. Siddiqui
{"title":"Resolving IEEE floating-point error using precision-based rounding algorithm","authors":"M. A. Awan, M. Siddiqui","doi":"10.1109/ICET.2005.1558903","DOIUrl":null,"url":null,"abstract":"Thispaperpresents a precision-based rounding approach toresolve IEEEfloating- pointerror(1). Binary floating-point systems canrepresent onlyafinite numberoffloating- point values inexact form. Allother values must beapproximated bytoclosest representable value. Theproposed method notonly provides a precision-based rounding, butalsorepresents floating-point values inexact formapplicable to anyarithmetic operation. Theerror estimation accuracy isevaluated across several different applications. However, theaccuracy slightly decreases withthedepth ofprecision. Thegoal istopresent asolution forIEEEfloating-point error forcommonly usedarithmetic operations usedinbusiness applications. Thissimple cprograms explains theabove mentioned problem #includ intmain()","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Thispaperpresents a precision-based rounding approach toresolve IEEEfloating- pointerror(1). Binary floating-point systems canrepresent onlyafinite numberoffloating- point values inexact form. Allother values must beapproximated bytoclosest representable value. Theproposed method notonly provides a precision-based rounding, butalsorepresents floating-point values inexact formapplicable to anyarithmetic operation. Theerror estimation accuracy isevaluated across several different applications. However, theaccuracy slightly decreases withthedepth ofprecision. Thegoal istopresent asolution forIEEEfloating-point error forcommonly usedarithmetic operations usedinbusiness applications. Thissimple cprograms explains theabove mentioned problem #includ intmain()
基于精度的舍入算法求解IEEE浮点误差
本文提出了一种基于精度的四舍五入方法来解析ieee浮动指针(1)。二进制浮点系统只能表示非精确形式的浮点数。所有其他值必须用最接近的可表示值来近似。所提出的方法不仅提供了基于精度的舍入,而且还表示适用于任何算术运算的不精确的浮点值。误差估计精度在几个不同的应用中进行了评估。然而,随着精度的加深,精度略有下降。目标是为业务应用程序中常用的算术运算的浮点错误提供一个解决方案。这个简单的程序解释了上面提到的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信