A pseudo non-diffracting microwave vortex

R. Speciale
{"title":"A pseudo non-diffracting microwave vortex","authors":"R. Speciale","doi":"10.1109/APS.2007.4396428","DOIUrl":null,"url":null,"abstract":"Computations, performed with the well-known Mathematica program, have produced rigorous, closed-form, symbolic expressions of the cylindrical E-field, and H-field components of a planar, circular-aperture field-distribution that appears to generate a radiation-pattern exhibiting the propagation-invariance of the so-called \"pseudo non-diffracting\" optical Bessel-beams. The new planar, circular-aperture field-distribution obtained includes radial-, azimuth-, and axial-components of both the E-field, and H-field with different linearly-dependent azimuth phases. Further, only the axial-(Sz*), and azimuth-(Sphi*) components of the complex poynting vector are non-zero, while the radial component Sr* is identically-zero, everywhere on and above the aperture-plane, at all radial distances from the broadside-axis, and at all axial-distances from the aperture-plane. The generated wave-front has the shape of a 3D helicoid-surface, with a pitch being a function of the kz/kr ratio. The diffraction-properties of the generated radiation- pattern are being computed by using the \"direct electromagnetic field integration \" method, reported by Walter Franz in 1948, and reviewed by Chen-To Tai in 2000.","PeriodicalId":117975,"journal":{"name":"2007 IEEE Antennas and Propagation Society International Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2007.4396428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Computations, performed with the well-known Mathematica program, have produced rigorous, closed-form, symbolic expressions of the cylindrical E-field, and H-field components of a planar, circular-aperture field-distribution that appears to generate a radiation-pattern exhibiting the propagation-invariance of the so-called "pseudo non-diffracting" optical Bessel-beams. The new planar, circular-aperture field-distribution obtained includes radial-, azimuth-, and axial-components of both the E-field, and H-field with different linearly-dependent azimuth phases. Further, only the axial-(Sz*), and azimuth-(Sphi*) components of the complex poynting vector are non-zero, while the radial component Sr* is identically-zero, everywhere on and above the aperture-plane, at all radial distances from the broadside-axis, and at all axial-distances from the aperture-plane. The generated wave-front has the shape of a 3D helicoid-surface, with a pitch being a function of the kz/kr ratio. The diffraction-properties of the generated radiation- pattern are being computed by using the "direct electromagnetic field integration " method, reported by Walter Franz in 1948, and reviewed by Chen-To Tai in 2000.
伪无衍射微波涡旋
用著名的Mathematica程序进行计算,得出了圆柱e场和平面圆孔径场分布的h场分量的严格的、封闭的符号表达式,这种场分布似乎产生了一种辐射模式,表现出所谓的“伪无衍射”光学贝塞尔光束的传播不变异性。得到的新平面圆孔径场分布包括e场和h场的径向分量、方位角分量和轴向分量,它们具有不同的线性依赖方位角相位。此外,只有复坡印特矢量的轴向分量(Sz*)和方位角分量(Sphi*)不为零,而径向分量Sr*在光阑平面上和上面的任何地方,在距宽轴的所有径向距离上,以及距光阑平面的所有轴向距离上,都相同为零。生成的波前具有三维螺旋曲面的形状,其螺距是kz/kr比的函数。利用“直接电磁场积分”方法计算了所产生的辐射图的衍射特性,该方法由Walter Franz于1948年报告,并由陈陶Tai于2000年进行了审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信