Electrical analysis of cell membrane poration induced by an intense nanosecond pulsed electric field, using an atomistic-to-continuum method

S. Kohler, Ming-Chak Ho, Z. Levine, P. Vernier, P. Lévêque, D. Arnaud-Cormos
{"title":"Electrical analysis of cell membrane poration induced by an intense nanosecond pulsed electric field, using an atomistic-to-continuum method","authors":"S. Kohler, Ming-Chak Ho, Z. Levine, P. Vernier, P. Lévêque, D. Arnaud-Cormos","doi":"10.1109/MWSYM.2014.6848464","DOIUrl":null,"url":null,"abstract":"Pulsed electric fields of nanosecond duration and high intensity (in the megavolt-per-meter range) have the ability to trigger functional modifications in biological cells, without irreversible disruption of the cell membranes. Although the biophysical mechanisms underlying the induced biological effects are not yet clear, promising applications have been found in biology, medicine and environment. Applications in medicine include cancer treatment, acceleration of wound healing or pain control. Transient nanometer-sized pores are believed to form on a nanosecond time scale in cell membranes exposed to high-intensity nanosecond pulsed electric fields. Direct observation of pore creation has not yet been achieved due to the involved spatiotemporal scales and the experimental constraints. In this study, we combine molecular dynamics (MD) simulations and a quasi-static approach using a custom implementation of the 3D finite-difference method to investigate the interactions that drive pore formation in cell membranes exposed to an intense nanosecond pulsed electric field. The developed method allows to compute and map at cell membranes the 3D spatiotemporal profiles of the electric potentials, electric fields and electric field gradients with atomistic details and subnanosecond dynamics.","PeriodicalId":262816,"journal":{"name":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2014.6848464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pulsed electric fields of nanosecond duration and high intensity (in the megavolt-per-meter range) have the ability to trigger functional modifications in biological cells, without irreversible disruption of the cell membranes. Although the biophysical mechanisms underlying the induced biological effects are not yet clear, promising applications have been found in biology, medicine and environment. Applications in medicine include cancer treatment, acceleration of wound healing or pain control. Transient nanometer-sized pores are believed to form on a nanosecond time scale in cell membranes exposed to high-intensity nanosecond pulsed electric fields. Direct observation of pore creation has not yet been achieved due to the involved spatiotemporal scales and the experimental constraints. In this study, we combine molecular dynamics (MD) simulations and a quasi-static approach using a custom implementation of the 3D finite-difference method to investigate the interactions that drive pore formation in cell membranes exposed to an intense nanosecond pulsed electric field. The developed method allows to compute and map at cell membranes the 3D spatiotemporal profiles of the electric potentials, electric fields and electric field gradients with atomistic details and subnanosecond dynamics.
利用原子-连续介质方法对纳秒级强脉冲电场诱导细胞膜穿孔的电分析
纳秒持续时间和高强度(在每米兆伏范围内)的脉冲电场具有触发生物细胞功能修饰的能力,而不会对细胞膜造成不可逆转的破坏。虽然诱导生物效应的生物物理机制尚不清楚,但已在生物学、医学和环境方面发现了有前景的应用。在医学上的应用包括癌症治疗,加速伤口愈合或疼痛控制。在暴露于高强度纳秒脉冲电场下的细胞膜上,瞬态纳米级孔隙被认为是在纳秒时间尺度上形成的。由于涉及的时空尺度和实验限制,尚未实现对孔隙形成的直接观察。在这项研究中,我们结合分子动力学(MD)模拟和准静态方法,使用定制的3D有限差分方法来研究暴露于强纳秒脉冲电场下细胞膜中驱动孔形成的相互作用。所开发的方法允许计算和绘制细胞膜上具有原子细节和亚纳秒动力学的电位,电场和电场梯度的三维时空轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信