Features combination for the detection of malicious Twitter accounts

Isaac David, O. Siordia, Daniela Moctezuma
{"title":"Features combination for the detection of malicious Twitter accounts","authors":"Isaac David, O. Siordia, Daniela Moctezuma","doi":"10.1109/ROPEC.2016.7830626","DOIUrl":null,"url":null,"abstract":"Microblogging social networks are easily subverted by automated fake identities that amass disproportionately large influence. In this paper we present an effort to profile and screen such kind of accounts from existing and original ground truth obtained from the Twitter platform. Seventy-one explanatory properties solely extracted from profile and timeline information are evaluated and used to compare the efficacy of common supervised machine learning methods at this classification task. Results confirm that feasible and largely effective detection devices can be constructed for the problem at hand.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Microblogging social networks are easily subverted by automated fake identities that amass disproportionately large influence. In this paper we present an effort to profile and screen such kind of accounts from existing and original ground truth obtained from the Twitter platform. Seventy-one explanatory properties solely extracted from profile and timeline information are evaluated and used to compare the efficacy of common supervised machine learning methods at this classification task. Results confirm that feasible and largely effective detection devices can be constructed for the problem at hand.
检测恶意Twitter帐户的功能组合
微博社交网络很容易被自动化的虚假身份所颠覆,这些身份积累了不成比例的巨大影响力。在本文中,我们展示了从Twitter平台获得的现有和原始地面真相中分析和筛选此类帐户的努力。仅从概要和时间线信息中提取的71个解释属性进行了评估,并用于比较常见的监督机器学习方法在此分类任务中的效果。结果证实,可以为手头的问题构建可行且有效的检测设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信