{"title":"Towards dictionary learning from images with non Gaussian noise","authors":"P. Chainais","doi":"10.1109/MLSP.2012.6349731","DOIUrl":null,"url":null,"abstract":"We address the problem of image dictionary learning from noisy images with non Gaussian noise. This problem is difficult. As a first step, we consider the extreme sparse code given by vector quantization, i.e. each pixel is finally associated to 1 single atom. For Gaussian noise, the natural solution is K-means clustering using the sum of the squares of differences between gray levels as the dissimilarity measure between patches. For non Gaussian noises (Poisson, Gamma,...), a new measure of dissimilarity between noisy patches is necessary. We study the use of the generalized likelihood ratios (GLR) recently introduced by Deledalle et al. in [1] to compare non Gaussian noisy patches. We propose a K-medoids algorithm generalizing the usual Linde-Buzo-Gray K-means using the GLR based dissimilarity measure. We obtain a vector quantization which provides a dictionary that can be very large and redundant. We illustrate our approach by dictionaries learnt from images featuring non Gaussian noise, and present preliminary denoising results.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We address the problem of image dictionary learning from noisy images with non Gaussian noise. This problem is difficult. As a first step, we consider the extreme sparse code given by vector quantization, i.e. each pixel is finally associated to 1 single atom. For Gaussian noise, the natural solution is K-means clustering using the sum of the squares of differences between gray levels as the dissimilarity measure between patches. For non Gaussian noises (Poisson, Gamma,...), a new measure of dissimilarity between noisy patches is necessary. We study the use of the generalized likelihood ratios (GLR) recently introduced by Deledalle et al. in [1] to compare non Gaussian noisy patches. We propose a K-medoids algorithm generalizing the usual Linde-Buzo-Gray K-means using the GLR based dissimilarity measure. We obtain a vector quantization which provides a dictionary that can be very large and redundant. We illustrate our approach by dictionaries learnt from images featuring non Gaussian noise, and present preliminary denoising results.