Visual Analysis of Agricultural Workers using Explainable Artificial Intelligence (XAI) on Class Activation Map (CAM) with Characteristic Point Data Output from OpenCV-based Analysis

Shinji Kawakura, M. Hirafuji, S. Ninomiya, R. Shibasaki
{"title":"Visual Analysis of Agricultural Workers using Explainable Artificial Intelligence (XAI) on Class Activation Map (CAM) with Characteristic Point Data Output from OpenCV-based Analysis","authors":"Shinji Kawakura, M. Hirafuji, S. Ninomiya, R. Shibasaki","doi":"10.24018/ejai.2023.2.1.16","DOIUrl":null,"url":null,"abstract":"In this study, we use explainable artificial intelligence (XAI) based on class activation map (CAM) techniques. Specifically, we use Grad-CAM, Grad-CAM++, and ScoreCAM to analyze outdoor physical agricultural (agri-) worker image datasets. In previous studies, we developed body-sensing systems to analyze human dynamics with the aim of enhancing agri-techniques, training methodologies, and worker development. These include distant, visual data-based sensing systems that capture image and movie datasets related to agri-worker motion and posture. For this study, we first obtained the aforementioned image datasets for researcher review. Then, we developed and executed Python programs with Open-Source Computer Vision (OpenCV) libraries and PyTorch to run XAI-oriented systems based on CAM techniques and obtained heat map-pictures of the visual explanations. Besides, we implement optical flow-based image analyses using our Visual C++ programs with OpenCV libraries, automatically set and chase the characteristic points related to the video datasets. Next, we analyze the dataset features and compare experienced and inexperienced subject groups. We investigate the output’s features, accuracies, and robustness to be able to make recommendations for real agri-workers, managers, product-developers, and researchers. Our findings indicate that the visualized output datasets are especially useful and may support further development of applied methods for these groups.","PeriodicalId":360205,"journal":{"name":"European Journal of Artificial Intelligence and Machine Learning","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejai.2023.2.1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we use explainable artificial intelligence (XAI) based on class activation map (CAM) techniques. Specifically, we use Grad-CAM, Grad-CAM++, and ScoreCAM to analyze outdoor physical agricultural (agri-) worker image datasets. In previous studies, we developed body-sensing systems to analyze human dynamics with the aim of enhancing agri-techniques, training methodologies, and worker development. These include distant, visual data-based sensing systems that capture image and movie datasets related to agri-worker motion and posture. For this study, we first obtained the aforementioned image datasets for researcher review. Then, we developed and executed Python programs with Open-Source Computer Vision (OpenCV) libraries and PyTorch to run XAI-oriented systems based on CAM techniques and obtained heat map-pictures of the visual explanations. Besides, we implement optical flow-based image analyses using our Visual C++ programs with OpenCV libraries, automatically set and chase the characteristic points related to the video datasets. Next, we analyze the dataset features and compare experienced and inexperienced subject groups. We investigate the output’s features, accuracies, and robustness to be able to make recommendations for real agri-workers, managers, product-developers, and researchers. Our findings indicate that the visualized output datasets are especially useful and may support further development of applied methods for these groups.
基于opencv分析输出特征点数据的可解释人工智能(XAI)在类别激活图(CAM)上的可视化分析
在本研究中,我们使用了基于类激活图(CAM)技术的可解释人工智能(XAI)。具体来说,我们使用Grad-CAM、Grad-CAM++和ScoreCAM来分析室外物理农业(agri-)工人图像数据集。在以前的研究中,我们开发了身体传感系统来分析人体动力学,目的是提高农业技术、培训方法和工人发展。其中包括远程、基于视觉数据的传感系统,该系统可捕获与农业工人运动和姿势有关的图像和电影数据集。在本研究中,我们首先获得了上述图像数据集供研究者审查。然后,我们使用开源计算机视觉(OpenCV)库和PyTorch开发并执行Python程序,以运行基于CAM技术的面向xai的系统,并获得可视化解释的热图图。此外,我们还利用Visual c++程序和OpenCV库实现了基于光流的图像分析,自动设置和追踪与视频数据集相关的特征点。接下来,我们分析数据集的特征,并比较有经验和没有经验的受试者组。我们调查了输出的特征、准确性和鲁棒性,以便能够为真正的农业工人、管理人员、产品开发人员和研究人员提出建议。我们的研究结果表明,可视化的输出数据集特别有用,并可能支持这些群体的应用方法的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信