Evaluation of FFT for GPU Cluster Using Tightly Coupled Accelerators Architecture

T. Hanawa, H. Fujii, N. Fujita, Tetsuya Odajima, Kazuya Matsumoto, T. Boku
{"title":"Evaluation of FFT for GPU Cluster Using Tightly Coupled Accelerators Architecture","authors":"T. Hanawa, H. Fujii, N. Fujita, Tetsuya Odajima, Kazuya Matsumoto, T. Boku","doi":"10.1109/CLUSTER.2015.113","DOIUrl":null,"url":null,"abstract":"Inter-node communications between accelerators in heterogeneous clusters require extra latency because of the time required to transfer data copies between the host and accelerator. Such communication latencies inhibit the optimal performance of affected applications. To address this problem, we proposed the Tightly Coupled Accelerators (TCA) architecture and designed an interconnection router chip named PEACH2. Accelerators in the TCA architecture communicate directly via the PCIe protocol, which is the current fundamental interface for all the accelerators and the host CPU, to eliminate protocol and data copy overheads. In this paper, we apply the TCA architecture to the Fast Fourier Transform (FFT) program, which is commonly used in scientific computations. First, we implemented all-to-all communication to TCA. The all-to-all communication was then applied to FFTE, which is one of the implementations of FFT. Based on the evaluation results using the HA-PACS/TCA system, we achieved the speedup of 2.7 with TCA in comparison with that with MPI using 16 nodes on the medium size.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inter-node communications between accelerators in heterogeneous clusters require extra latency because of the time required to transfer data copies between the host and accelerator. Such communication latencies inhibit the optimal performance of affected applications. To address this problem, we proposed the Tightly Coupled Accelerators (TCA) architecture and designed an interconnection router chip named PEACH2. Accelerators in the TCA architecture communicate directly via the PCIe protocol, which is the current fundamental interface for all the accelerators and the host CPU, to eliminate protocol and data copy overheads. In this paper, we apply the TCA architecture to the Fast Fourier Transform (FFT) program, which is commonly used in scientific computations. First, we implemented all-to-all communication to TCA. The all-to-all communication was then applied to FFTE, which is one of the implementations of FFT. Based on the evaluation results using the HA-PACS/TCA system, we achieved the speedup of 2.7 with TCA in comparison with that with MPI using 16 nodes on the medium size.
基于紧耦合加速器架构的GPU集群FFT评估
异构集群中加速器之间的节点间通信需要额外的延迟,因为在主机和加速器之间传输数据副本需要时间。这种通信延迟抑制了受影响应用程序的最佳性能。为了解决这个问题,我们提出了紧密耦合加速器(TCA)架构,并设计了一个互连路由器芯片PEACH2。TCA架构中的加速器直接通过PCIe协议通信,这是当前所有加速器和主机CPU的基本接口,以消除协议和数据复制开销。本文将TCA体系结构应用于科学计算中常用的快速傅里叶变换(FFT)程序。首先,我们实现了对TCA的全对全通信。然后将全对全通信应用于FFTE,这是FFT的实现之一。基于HA-PACS/TCA系统的评估结果,在中等规模上,与使用16个节点的MPI相比,使用TCA系统的速度提高了2.7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信