EEG signals classifications of motor imagery using adaptive neuro-fuzzy inference system and interval type-2 fuzzy system

Shereen A. El-aal, R. Ramadan, N. Ghali
{"title":"EEG signals classifications of motor imagery using adaptive neuro-fuzzy inference system and interval type-2 fuzzy system","authors":"Shereen A. El-aal, R. Ramadan, N. Ghali","doi":"10.1504/IJISTA.2017.10005101","DOIUrl":null,"url":null,"abstract":"Brain computer interface (BCI) techniques are used to help disabled people to translate brain signals to control commands imitating specific human thinking based on electroencephalography (EEG) signal processing. The paper tries to accurately classify motor imagery imagination tasks, e.g., left and right hand movement. The paper utilises different methods for such classification including: (1) adaptive neuro fuzzy inference system (ANFIS); (2) K-nearest neighbour (KNN); (3) linear discriminant analysis (LDA) and (4) interval Type-2 fuzzy system (IT2-FS) classifiers. In addition, with ANFIS approach, different clustering methods are examined such as Subtractive clustering, fuzzy C-means clustering and K-means clustering. At the same time, subtractiveType-2 clustering is applied to the received signals. The paper focuses on three different features which are AR coefficients, Band Power Frequency, and common spatial pattern (CSP). The classification accuracies with two optimal channels C3 and C4 are investigated.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10005101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain computer interface (BCI) techniques are used to help disabled people to translate brain signals to control commands imitating specific human thinking based on electroencephalography (EEG) signal processing. The paper tries to accurately classify motor imagery imagination tasks, e.g., left and right hand movement. The paper utilises different methods for such classification including: (1) adaptive neuro fuzzy inference system (ANFIS); (2) K-nearest neighbour (KNN); (3) linear discriminant analysis (LDA) and (4) interval Type-2 fuzzy system (IT2-FS) classifiers. In addition, with ANFIS approach, different clustering methods are examined such as Subtractive clustering, fuzzy C-means clustering and K-means clustering. At the same time, subtractiveType-2 clustering is applied to the received signals. The paper focuses on three different features which are AR coefficients, Band Power Frequency, and common spatial pattern (CSP). The classification accuracies with two optimal channels C3 and C4 are investigated.
基于自适应神经模糊推理系统和区间2型模糊系统的运动意象脑电信号分类
脑机接口(BCI)技术是在脑电图(EEG)信号处理的基础上,帮助残疾人将大脑信号转化为模仿人类特定思维的控制命令。本文试图对运动想象任务进行准确的分类,如左手运动和右手运动。本文采用了不同的分类方法,包括:(1)自适应神经模糊推理系统(ANFIS);(2) k近邻(KNN);(3)线性判别分析(LDA)和(4)区间2型模糊系统(IT2-FS)分类器。此外,利用ANFIS方法研究了不同的聚类方法,如减法聚类、模糊c均值聚类和k均值聚类。同时对接收到的信号进行了subtractiveType-2聚类处理。本文重点研究了AR系数、频带工频和共空间方向图(CSP)三种不同的特征。研究了两种最优通道C3和C4的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信