Proportional Navigation-Benchmarked Guidance Strategy using Artificial Neural Networks

Kali Charan Behara, K. Akash, S. Ahamed, Satadal Ghosh
{"title":"Proportional Navigation-Benchmarked Guidance Strategy using Artificial Neural Networks","authors":"Kali Charan Behara, K. Akash, S. Ahamed, Satadal Ghosh","doi":"10.1109/ICCA.2019.8899623","DOIUrl":null,"url":null,"abstract":"Pursuit of an aerial target by interceptor has become a problem of paramount importance in the last several decades. Proportional Navigation (PN) guidance law is most widely used because of its simplicity, ease in implementation and robustness. Therefore, by benchmarking PN guidance, this paper obtains effective guidance strategies leveraging artificial neural networks (ANNs). Suitable input variables that can ensure good mathematical approximation, and optimal training strategy that can ensure sufficient training accuracy are obtained. Performances of ANNs with corresponding input variables are found to be equivalently effective in comparison with PN guidance in most of the engagement geometries.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pursuit of an aerial target by interceptor has become a problem of paramount importance in the last several decades. Proportional Navigation (PN) guidance law is most widely used because of its simplicity, ease in implementation and robustness. Therefore, by benchmarking PN guidance, this paper obtains effective guidance strategies leveraging artificial neural networks (ANNs). Suitable input variables that can ensure good mathematical approximation, and optimal training strategy that can ensure sufficient training accuracy are obtained. Performances of ANNs with corresponding input variables are found to be equivalently effective in comparison with PN guidance in most of the engagement geometries.
基于人工神经网络的比例导航基准制导策略
在过去的几十年里,拦截机对空中目标的追击已经成为一个至关重要的问题。比例导航(PN)制导律以其简单、易于实现、鲁棒性好等优点得到了广泛的应用。因此,本文通过对PN制导进行基准测试,获得了利用人工神经网络(ann)的有效制导策略。得到了能保证良好数学近似的合适输入变量和能保证足够训练精度的最优训练策略。在大多数交战几何形状中,具有相应输入变量的人工神经网络的性能与PN制导相当有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信