{"title":"Systematic generation of smart grid-purposed converters supplied by environmental-friendly sources of energy","authors":"A. Ioinovici","doi":"10.1109/PESA.2017.8277745","DOIUrl":null,"url":null,"abstract":"After clarifying some misunderstandings about the switched-capacitor converters and discussing the shortcomings of this type of converters if used in conjunction with the green sources of energy, a group of step-up switched-capacitor-inductor cells will be presented. They have been developed in order to be inserted in basic converters with current source type of input in order to get a large dc gain, non-pulsating input current, low components count, and high energy processing efficiency. It will be shown that almost all the available large dc gain converters have the same geometric structure. Starting from such a graph, a systematic procedure for synthesizing new converters will be shown. It permits not only to rediscover the available structures, but to find new converters suitable to be used in smart grids supplied by green sources of energy. Criteria for comparing different converters in order to find the best ones in such applications and ways for generalizing the converters for getting ultra-high dc gains, with different performances will be explained.","PeriodicalId":223569,"journal":{"name":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","volume":"55 100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESA.2017.8277745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
After clarifying some misunderstandings about the switched-capacitor converters and discussing the shortcomings of this type of converters if used in conjunction with the green sources of energy, a group of step-up switched-capacitor-inductor cells will be presented. They have been developed in order to be inserted in basic converters with current source type of input in order to get a large dc gain, non-pulsating input current, low components count, and high energy processing efficiency. It will be shown that almost all the available large dc gain converters have the same geometric structure. Starting from such a graph, a systematic procedure for synthesizing new converters will be shown. It permits not only to rediscover the available structures, but to find new converters suitable to be used in smart grids supplied by green sources of energy. Criteria for comparing different converters in order to find the best ones in such applications and ways for generalizing the converters for getting ultra-high dc gains, with different performances will be explained.