P. Paulin, Chuck Pilkington, M. Langevin, E. Bensoudane, G. Nicolescu
{"title":"Parallel programming models for a multi-processor SoC platform applied to high-speed traffic management","authors":"P. Paulin, Chuck Pilkington, M. Langevin, E. Bensoudane, G. Nicolescu","doi":"10.1109/CODES+ISSS.2004.46","DOIUrl":null,"url":null,"abstract":"We describe the MultiFlex multi-processor SoC programming environment, with the focus on two programming models: a distributed system object component (DSOC) message passing model, and a symmetrical multi-processing (SMP) model using shared memory. The MultiFlex tools map these models onto the StepNP multi-processor SoC platform, while making use of hardware accelerators for message passing and task scheduling. We present the results of mapping an Internet traffic management application, running at 2.5 Gb/s.","PeriodicalId":127038,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES+ISSS.2004.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We describe the MultiFlex multi-processor SoC programming environment, with the focus on two programming models: a distributed system object component (DSOC) message passing model, and a symmetrical multi-processing (SMP) model using shared memory. The MultiFlex tools map these models onto the StepNP multi-processor SoC platform, while making use of hardware accelerators for message passing and task scheduling. We present the results of mapping an Internet traffic management application, running at 2.5 Gb/s.