ЭЛЕКТРОХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ АЛЮМИНИЯ ПРИ КАТОДНОЙ ОБРАБОТКЕ В ХИТОЗАНСОДЕРЖАЩИХ ВОДНЫХ ФОСФАТ- МОЛИБДАТНЫХ РАСТВОРАХ

Светлана Степановна Попова, А. Е. Гоц, Ю. П. Маковецкая
{"title":"ЭЛЕКТРОХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ АЛЮМИНИЯ ПРИ КАТОДНОЙ ОБРАБОТКЕ В ХИТОЗАНСОДЕРЖАЩИХ ВОДНЫХ ФОСФАТ- МОЛИБДАТНЫХ РАСТВОРАХ","authors":"Светлана Степановна Попова, А. Е. Гоц, Ю. П. Маковецкая","doi":"10.6060/rcj.2021651.8","DOIUrl":null,"url":null,"abstract":"Исследованы морфология поверхности алюминиевого электрода, элементный состав поверхностного слоя до и после катодной обработки в гальваностатическом режиме. Установлено, что в области катодных плотностей тока менее 0,1 мА/см2 на алюминиевом катоде происходит преимущественно  адсорбция полимолибдат– и полифосфатмолибдат–ионов, сопровождающаяся образованием в адсорбированном слое полимерных цепочек из оксидов молибдена промежуточной валентности Mo (VI) → Mo (IV) → Mo (II), двойных оксидов, алюминатов, полиоксофосфат-молибдатов алюминия, обеспечивающих свободное перемещение катионов щелочного металла и водорода. Формирование слоя гетеро-полиоксофосфатмолибдатов, согласно данным бестоковой хронопотенциометрии, вторичной ионной масс-спектрометрии и сканирующей электронной микроскопии, протекает уже в отсутствие тока. Определяющую роль в формировании морфологии модифицирующего слоя и его элементного состава играет введение фосфорной кислоты в раствор молибдата натрия. При 0,5 мА/см2 и более высоких плотностях катодного тока протекает преимущественно процесс выделения водорода как по реакции разряда ионов водорода и молекул воды, так и за счет химического взаимодействия алюминия и образующегося, вследствие протекания процесса внедрения, сплава алюминия с натрием с молекулами воды и фосфорной кислоты. На это указывает подщелачивание приэлектродного слоя раствора. Скорость интеркалирования ионов водорода и натрия в структуру полиоксофосфат-молибдатного слоя резко возрастает с увеличением плотности тока до значений 5…10 мА/см2, когда на электроде устанавливается потенциал от −1,3…−3,0 В. Этому способствует не только волокновая структура формирующегося слоя полигетерооксофосфатмолибдатов алюминия и натрия, но и образование в растворе протонированных катионов и анионов фосфорной кислоты, которые облегчают взаимодействие хитозана с поверхностью электрода, вследствие перехода в фосфатный комплекс, и обеспечивают усиление пленкообразующего эффекта и упорядочение структуры модифицирующего слоя. На это указывает снижение краевого угла смачивания.","PeriodicalId":304460,"journal":{"name":"Российский химический журнал","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Российский химический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/rcj.2021651.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Исследованы морфология поверхности алюминиевого электрода, элементный состав поверхностного слоя до и после катодной обработки в гальваностатическом режиме. Установлено, что в области катодных плотностей тока менее 0,1 мА/см2 на алюминиевом катоде происходит преимущественно  адсорбция полимолибдат– и полифосфатмолибдат–ионов, сопровождающаяся образованием в адсорбированном слое полимерных цепочек из оксидов молибдена промежуточной валентности Mo (VI) → Mo (IV) → Mo (II), двойных оксидов, алюминатов, полиоксофосфат-молибдатов алюминия, обеспечивающих свободное перемещение катионов щелочного металла и водорода. Формирование слоя гетеро-полиоксофосфатмолибдатов, согласно данным бестоковой хронопотенциометрии, вторичной ионной масс-спектрометрии и сканирующей электронной микроскопии, протекает уже в отсутствие тока. Определяющую роль в формировании морфологии модифицирующего слоя и его элементного состава играет введение фосфорной кислоты в раствор молибдата натрия. При 0,5 мА/см2 и более высоких плотностях катодного тока протекает преимущественно процесс выделения водорода как по реакции разряда ионов водорода и молекул воды, так и за счет химического взаимодействия алюминия и образующегося, вследствие протекания процесса внедрения, сплава алюминия с натрием с молекулами воды и фосфорной кислоты. На это указывает подщелачивание приэлектродного слоя раствора. Скорость интеркалирования ионов водорода и натрия в структуру полиоксофосфат-молибдатного слоя резко возрастает с увеличением плотности тока до значений 5…10 мА/см2, когда на электроде устанавливается потенциал от −1,3…−3,0 В. Этому способствует не только волокновая структура формирующегося слоя полигетерооксофосфатмолибдатов алюминия и натрия, но и образование в растворе протонированных катионов и анионов фосфорной кислоты, которые облегчают взаимодействие хитозана с поверхностью электрода, вследствие перехода в фосфатный комплекс, и обеспечивают усиление пленкообразующего эффекта и упорядочение структуры модифицирующего слоя. На это указывает снижение краевого угла смачивания.
含磷酸-钼溶液中的阴极处理铝表面电化学改造
铝电极表面形态学研究,在电流静电模式下阴极处理前后表面层的元素组成。确定领域阴极电流密度小于0.1 ma /平方英寸铝制阴极发生полимолибдат而且полифосфатмолибдат离子吸附作用为主,伴随教育中的克拉克层聚合物链氧化钼中间价Mo (VI)→Mo (IV)→Mo (II),双氧化,алюминатполиоксофосфатмолибдат铝提供自由流动碱金属阳离子和氢。根据非斯托克时间电位计、次级质量光谱仪和扫描电子显微镜显示,异性多磷酸盐层的形成已经在没有电流的情况下发生。改变层形态学及其元素组成的关键作用是将磷酸引入钼钠溶液中。在0.5马赫数/ cm2和更高的阴极电流中,氢主要通过氢和水分子的反应和铝的化学反应产生,铝和钠合金与水分子和磷酸分子结合而形成。这是由一层电离溶液的碱化引起的。速度结构интеркалирован氢离子和钠полиоксофосфатмолибдатн层大幅增加电流密度增加到5 / 5月10日,当电极上设定潜力从−1.3−3.0 v .这不仅有利于волокнов结构形成层层полигетерооксофосфатмолибдат铝钠,而且教育протонирова阳离子和阴离子的磷酸溶液有益于хитоза与电极表面由于磷酸盐复合物的转变,它们提供了加强胶膜效应和对改良层结构的调整。这表明边缘湿度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信