Светлана Степановна Попова, А. Е. Гоц, Ю. П. Маковецкая
{"title":"ЭЛЕКТРОХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ АЛЮМИНИЯ ПРИ КАТОДНОЙ ОБРАБОТКЕ В ХИТОЗАНСОДЕРЖАЩИХ ВОДНЫХ ФОСФАТ- МОЛИБДАТНЫХ РАСТВОРАХ","authors":"Светлана Степановна Попова, А. Е. Гоц, Ю. П. Маковецкая","doi":"10.6060/rcj.2021651.8","DOIUrl":null,"url":null,"abstract":"Исследованы морфология поверхности алюминиевого электрода, элементный состав поверхностного слоя до и после катодной обработки в гальваностатическом режиме. Установлено, что в области катодных плотностей тока менее 0,1 мА/см2 на алюминиевом катоде происходит преимущественно адсорбция полимолибдат– и полифосфатмолибдат–ионов, сопровождающаяся образованием в адсорбированном слое полимерных цепочек из оксидов молибдена промежуточной валентности Mo (VI) → Mo (IV) → Mo (II), двойных оксидов, алюминатов, полиоксофосфат-молибдатов алюминия, обеспечивающих свободное перемещение катионов щелочного металла и водорода. Формирование слоя гетеро-полиоксофосфатмолибдатов, согласно данным бестоковой хронопотенциометрии, вторичной ионной масс-спектрометрии и сканирующей электронной микроскопии, протекает уже в отсутствие тока. Определяющую роль в формировании морфологии модифицирующего слоя и его элементного состава играет введение фосфорной кислоты в раствор молибдата натрия. При 0,5 мА/см2 и более высоких плотностях катодного тока протекает преимущественно процесс выделения водорода как по реакции разряда ионов водорода и молекул воды, так и за счет химического взаимодействия алюминия и образующегося, вследствие протекания процесса внедрения, сплава алюминия с натрием с молекулами воды и фосфорной кислоты. На это указывает подщелачивание приэлектродного слоя раствора. Скорость интеркалирования ионов водорода и натрия в структуру полиоксофосфат-молибдатного слоя резко возрастает с увеличением плотности тока до значений 5…10 мА/см2, когда на электроде устанавливается потенциал от −1,3…−3,0 В. Этому способствует не только волокновая структура формирующегося слоя полигетерооксофосфатмолибдатов алюминия и натрия, но и образование в растворе протонированных катионов и анионов фосфорной кислоты, которые облегчают взаимодействие хитозана с поверхностью электрода, вследствие перехода в фосфатный комплекс, и обеспечивают усиление пленкообразующего эффекта и упорядочение структуры модифицирующего слоя. На это указывает снижение краевого угла смачивания.","PeriodicalId":304460,"journal":{"name":"Российский химический журнал","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Российский химический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/rcj.2021651.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Исследованы морфология поверхности алюминиевого электрода, элементный состав поверхностного слоя до и после катодной обработки в гальваностатическом режиме. Установлено, что в области катодных плотностей тока менее 0,1 мА/см2 на алюминиевом катоде происходит преимущественно адсорбция полимолибдат– и полифосфатмолибдат–ионов, сопровождающаяся образованием в адсорбированном слое полимерных цепочек из оксидов молибдена промежуточной валентности Mo (VI) → Mo (IV) → Mo (II), двойных оксидов, алюминатов, полиоксофосфат-молибдатов алюминия, обеспечивающих свободное перемещение катионов щелочного металла и водорода. Формирование слоя гетеро-полиоксофосфатмолибдатов, согласно данным бестоковой хронопотенциометрии, вторичной ионной масс-спектрометрии и сканирующей электронной микроскопии, протекает уже в отсутствие тока. Определяющую роль в формировании морфологии модифицирующего слоя и его элементного состава играет введение фосфорной кислоты в раствор молибдата натрия. При 0,5 мА/см2 и более высоких плотностях катодного тока протекает преимущественно процесс выделения водорода как по реакции разряда ионов водорода и молекул воды, так и за счет химического взаимодействия алюминия и образующегося, вследствие протекания процесса внедрения, сплава алюминия с натрием с молекулами воды и фосфорной кислоты. На это указывает подщелачивание приэлектродного слоя раствора. Скорость интеркалирования ионов водорода и натрия в структуру полиоксофосфат-молибдатного слоя резко возрастает с увеличением плотности тока до значений 5…10 мА/см2, когда на электроде устанавливается потенциал от −1,3…−3,0 В. Этому способствует не только волокновая структура формирующегося слоя полигетерооксофосфатмолибдатов алюминия и натрия, но и образование в растворе протонированных катионов и анионов фосфорной кислоты, которые облегчают взаимодействие хитозана с поверхностью электрода, вследствие перехода в фосфатный комплекс, и обеспечивают усиление пленкообразующего эффекта и упорядочение структуры модифицирующего слоя. На это указывает снижение краевого угла смачивания.