Software- and hardware-in-the-loop verification of flight dynamics model and flight control simulation of a fixed-wing unmanned aerial vehicle

C. Coopmans, Michal Podhradský, Nathan Hoffer
{"title":"Software- and hardware-in-the-loop verification of flight dynamics model and flight control simulation of a fixed-wing unmanned aerial vehicle","authors":"C. Coopmans, Michal Podhradský, Nathan Hoffer","doi":"10.1109/RED-UAS.2015.7440998","DOIUrl":null,"url":null,"abstract":"Unmanned aerial system (UAS) use is ever-increasing. In this paper, it is shown that even with low-cost hardware and open-source software, simple numerical testing practices (software- and hardware-in-the-loop) can prove the accuracy and usefulness of an aeronautical flight model, as well as provide valuable pre-flight testing of many situations typically only encountered in flight: high winds, hardware failure, etc. Software and hardware simulation results are compared with actual flight testing results to show that these modeling and testing techniques are accurate and provide a useful testing platform for a small unmanned aerial vehicle. Source code used in simulation is open and provided to the community.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7440998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Unmanned aerial system (UAS) use is ever-increasing. In this paper, it is shown that even with low-cost hardware and open-source software, simple numerical testing practices (software- and hardware-in-the-loop) can prove the accuracy and usefulness of an aeronautical flight model, as well as provide valuable pre-flight testing of many situations typically only encountered in flight: high winds, hardware failure, etc. Software and hardware simulation results are compared with actual flight testing results to show that these modeling and testing techniques are accurate and provide a useful testing platform for a small unmanned aerial vehicle. Source code used in simulation is open and provided to the community.
固定翼无人机飞行动力学模型软硬件在环验证与飞行控制仿真
无人机系统(UAS)的使用日益增加。本文表明,即使使用低成本的硬件和开源软件,简单的数值测试实践(软件和硬件在环)也可以证明航空飞行模型的准确性和实用性,并为许多通常只在飞行中遇到的情况提供有价值的飞行前测试:大风,硬件故障等。软件和硬件仿真结果与实际飞行测试结果进行了对比,验证了这些建模和测试技术的准确性,为小型无人机提供了一个有用的测试平台。在模拟中使用的源代码是开放的,并提供给社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信