Minimum message length encoding, evolutionary trees and multiple-alignment

L. Allison, C. S. Wallace, C. N. Yee
{"title":"Minimum message length encoding, evolutionary trees and multiple-alignment","authors":"L. Allison, C. S. Wallace, C. N. Yee","doi":"10.1109/HICSS.1992.183219","DOIUrl":null,"url":null,"abstract":"A method of Bayesian inference known as minimum message length encoding is applied to the inference of an evolutionary-tree and to multiple-alignment for k>or=2 strings. It allows the posterior odds-ratio of two competing hypotheses, for example two trees, to be calculated. A tree that is a good hypothesis forms the basis of a short message describing the strings. The mutation process is modelled by a finite-state machine. It is seen that tree inference and multiple-alignment are intimately connected.<<ETX>>","PeriodicalId":103288,"journal":{"name":"Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.1992.183219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A method of Bayesian inference known as minimum message length encoding is applied to the inference of an evolutionary-tree and to multiple-alignment for k>or=2 strings. It allows the posterior odds-ratio of two competing hypotheses, for example two trees, to be calculated. A tree that is a good hypothesis forms the basis of a short message describing the strings. The mutation process is modelled by a finite-state machine. It is seen that tree inference and multiple-alignment are intimately connected.<>
最小消息长度编码,进化树和多重对齐
一种被称为最小消息长度编码的贝叶斯推理方法被应用于进化树的推理和k>或=2个字符串的多重对齐。它允许计算两个相互竞争的假设(例如两棵树)的后验比值。一个好的假设树构成了描述字符串的短消息的基础。突变过程由有限状态机建模。可见,树推理和多对齐是紧密相连的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信