OPAvion: mining and visualization in large graphs

L. Akoglu, Duen Horng Chau, U. Kang, Danai Koutra, C. Faloutsos
{"title":"OPAvion: mining and visualization in large graphs","authors":"L. Akoglu, Duen Horng Chau, U. Kang, Danai Koutra, C. Faloutsos","doi":"10.1145/2213836.2213941","DOIUrl":null,"url":null,"abstract":"Given a large graph with millions or billions of nodes and edges, like a who-follows-whom Twitter graph, how do we scalably compute its statistics, summarize its patterns, spot anomalies, visualize and make sense of it? We present OPAvion, a graph mining system that provides a scalable, interactive workflow to accomplish these analysis tasks. OPAvion consists of three modules: (1) The Summarization module (Pegasus) operates off-line on massive, disk-resident graphs and computes graph statistics, like PageRank scores, connected components, degree distribution, triangles, etc.; (2) The Anomaly Detection module (OddBall) uses graph statistics to mine patterns and spot anomalies, such as nodes with many contacts but few interactions with them (possibly telemarketers); (3) The Interactive Visualization module (Apolo) lets users incrementally explore the graph, starting with their chosen nodes or the flagged anomalous nodes; then users can expand to the nodes' vicinities, label them into categories, and thus interactively navigate the interesting parts of the graph. In our demonstration, we invite our audience to interact with OPAvion and try out its core capabilities on the Stack Overflow Q&A graph that describes over 6 million questions and answers among 650K users.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Given a large graph with millions or billions of nodes and edges, like a who-follows-whom Twitter graph, how do we scalably compute its statistics, summarize its patterns, spot anomalies, visualize and make sense of it? We present OPAvion, a graph mining system that provides a scalable, interactive workflow to accomplish these analysis tasks. OPAvion consists of three modules: (1) The Summarization module (Pegasus) operates off-line on massive, disk-resident graphs and computes graph statistics, like PageRank scores, connected components, degree distribution, triangles, etc.; (2) The Anomaly Detection module (OddBall) uses graph statistics to mine patterns and spot anomalies, such as nodes with many contacts but few interactions with them (possibly telemarketers); (3) The Interactive Visualization module (Apolo) lets users incrementally explore the graph, starting with their chosen nodes or the flagged anomalous nodes; then users can expand to the nodes' vicinities, label them into categories, and thus interactively navigate the interesting parts of the graph. In our demonstration, we invite our audience to interact with OPAvion and try out its core capabilities on the Stack Overflow Q&A graph that describes over 6 million questions and answers among 650K users.
OPAvion:大型图形的挖掘和可视化
给定一个拥有数百万或数十亿个节点和边的大图,就像Twitter上的谁跟随谁的图,我们如何可扩展地计算其统计数据,总结其模式,发现异常,可视化并理解它?我们提出了OPAvion,一个图形挖掘系统,它提供了一个可扩展的交互式工作流来完成这些分析任务。OPAvion由三个模块组成:(1)摘要模块(Pegasus)离线操作大量磁盘驻留图形,并计算图形统计数据,如PageRank分数,连接组件,度分布,三角形等;(2)异常检测模块(OddBall)使用图形统计来挖掘模式和发现异常,例如有很多联系人但很少与他们互动的节点(可能是电话营销人员);(3)交互可视化模块(apollo)允许用户增量地探索图形,从他们选择的节点或标记的异常节点开始;然后,用户可以扩展到节点附近,将它们标记为类别,从而交互式地导航图的有趣部分。在我们的演示中,我们邀请观众与OPAvion进行交互,并在堆栈溢出问答图上试用它的核心功能,该图表描述了65万用户中超过600万个问题和答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信