Improving the Classification Result of Rice Varieties Using Gradient Boosting Methods

Amalia Utamima, Alexander Alangghya, Tarisa A. Hakim, Aryageraldi Pajung
{"title":"Improving the Classification Result of Rice Varieties Using Gradient Boosting Methods","authors":"Amalia Utamima, Alexander Alangghya, Tarisa A. Hakim, Aryageraldi Pajung","doi":"10.1109/SIST58284.2023.10223511","DOIUrl":null,"url":null,"abstract":"An accurate identification of rice grain is crucial for classifying rice varieties. This study classifies five distinct rice types that share morphological characteristics using four different machine learning methods. A total of seventy-five thousand records, consisting of fifteen thousand for each variety of rice grains, are collected from previous research. Machine learning methods that are used in this study are the Gradient Boosting method and its variances. The experimental results show that Light Gradient Boosting Machine was the algorithm with the most significant classification success rate compared to other methods, with an accuracy of 98,14%.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate identification of rice grain is crucial for classifying rice varieties. This study classifies five distinct rice types that share morphological characteristics using four different machine learning methods. A total of seventy-five thousand records, consisting of fifteen thousand for each variety of rice grains, are collected from previous research. Machine learning methods that are used in this study are the Gradient Boosting method and its variances. The experimental results show that Light Gradient Boosting Machine was the algorithm with the most significant classification success rate compared to other methods, with an accuracy of 98,14%.
利用梯度提升法改进水稻品种分类结果
准确识别稻谷是水稻品种分类的关键。这项研究使用四种不同的机器学习方法对五种不同的水稻类型进行分类,这些水稻类型具有共同的形态特征。从以往的研究中收集到的记录总数为7.5万条,每一种水稻品种记录1.5万条。本研究中使用的机器学习方法是梯度增强方法及其方差。实验结果表明,与其他方法相比,光梯度增强机是分类成功率最高的算法,准确率为98.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信