Sequential Segmentation of EEG Signals for Epileptic Seizure Detection using Machine Learning

Zeba Karin Ahmad, Vikram Singh, Y. Khan
{"title":"Sequential Segmentation of EEG Signals for Epileptic Seizure Detection using Machine Learning","authors":"Zeba Karin Ahmad, Vikram Singh, Y. Khan","doi":"10.1109/ICSPC46172.2019.8976487","DOIUrl":null,"url":null,"abstract":"The problem of epilepsy has grown exponentially and is now considered as one of the most prevailing neurological disorders affecting around 50 million people around the globe. Epilepsy is identified by analyzing the interictal activity present in the EEG signal. Visual analysis of EEG is a tedious process and subject to human error. This work proposes a robust method to ease the burden of intractable seizures by automatic recognition of ictal epileptiform activity in the EEG of epileptic patients. The classification between EEG having an epileptic seizure and non-seizure is done using various machine learning algorithms. The classifiers used are Simple Decision tree, Quadratic Discriminant, Medium Gaussian SVM, Bagged Trees, and Subspace k-NN. The performance is assessed using 10-fold cross-validation.","PeriodicalId":321652,"journal":{"name":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC46172.2019.8976487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of epilepsy has grown exponentially and is now considered as one of the most prevailing neurological disorders affecting around 50 million people around the globe. Epilepsy is identified by analyzing the interictal activity present in the EEG signal. Visual analysis of EEG is a tedious process and subject to human error. This work proposes a robust method to ease the burden of intractable seizures by automatic recognition of ictal epileptiform activity in the EEG of epileptic patients. The classification between EEG having an epileptic seizure and non-seizure is done using various machine learning algorithms. The classifiers used are Simple Decision tree, Quadratic Discriminant, Medium Gaussian SVM, Bagged Trees, and Subspace k-NN. The performance is assessed using 10-fold cross-validation.
脑电信号序列分割用于癫痫发作检测的机器学习
癫痫问题呈指数级增长,现在被认为是影响全球约5000万人的最普遍的神经系统疾病之一。癫痫是通过分析脑电图信号中的间歇活动来识别的。脑电图的可视化分析是一个繁琐且容易出现人为错误的过程。这项工作提出了一种强大的方法,以减轻顽固性癫痫发作的负担,通过自动识别癫痫患者的脑电图癫痫样活动。脑电图癫痫发作和非癫痫发作的分类是使用各种机器学习算法完成的。使用的分类器有简单决策树、二次判别式、中高斯支持向量机、袋装树和子空间k-NN。使用10倍交叉验证评估性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信