{"title":"Neural Network Equalization for Asynchronous Multitrack Detection in TDMR","authors":"E. Sadeghian","doi":"10.1109/TMRC56419.2022.9918163","DOIUrl":null,"url":null,"abstract":"The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.