{"title":"The sample complexity of revenue maximization","authors":"R. Cole, T. Roughgarden","doi":"10.1145/2591796.2591867","DOIUrl":null,"url":null,"abstract":"In the design and analysis of revenue-maximizing auctions, auction performance is typically measured with respect to a prior distribution over inputs. The most obvious source for such a distribution is past data. The goal of this paper is to understand how much data is necessary and sufficient to guarantee near-optimal expected revenue. Our basic model is a single-item auction in which bidders' valuations are drawn independently from unknown and nonidentical distributions. The seller is given m samples from each of these distributions \"for free\" and chooses an auction to run on a fresh sample. How large does m need to be, as a function of the number k of bidders and ε 0, so that a (1 -- ε)-approximation of the optimal revenue is achievable? We prove that, under standard tail conditions on the underlying distributions, m = poly(k, 1/ε) samples are necessary and sufficient. Our lower bound stands in contrast to many recent results on simple and prior-independent auctions and fundamentally involves the interplay between bidder competition, non-identical distributions, and a very close (but still constant) approximation of the optimal revenue. It effectively shows that the only way to achieve a sufficiently good constant approximation of the optimal revenue is through a detailed understanding of bidders' valuation distributions. Our upper bound is constructive and applies in particular to a variant of the empirical Myerson auction, the natural auction that runs the revenue-maximizing auction with respect to the empirical distributions of the samples. To capture how our sample complexity upper bound depends on the set of allowable distributions, we introduce α-strongly regular distributions, which interpolate between the well-studied classes of regular (α = 0) and MHR (α = 1) distributions. We give evidence that this definition is of independent interest.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"243","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 243
Abstract
In the design and analysis of revenue-maximizing auctions, auction performance is typically measured with respect to a prior distribution over inputs. The most obvious source for such a distribution is past data. The goal of this paper is to understand how much data is necessary and sufficient to guarantee near-optimal expected revenue. Our basic model is a single-item auction in which bidders' valuations are drawn independently from unknown and nonidentical distributions. The seller is given m samples from each of these distributions "for free" and chooses an auction to run on a fresh sample. How large does m need to be, as a function of the number k of bidders and ε 0, so that a (1 -- ε)-approximation of the optimal revenue is achievable? We prove that, under standard tail conditions on the underlying distributions, m = poly(k, 1/ε) samples are necessary and sufficient. Our lower bound stands in contrast to many recent results on simple and prior-independent auctions and fundamentally involves the interplay between bidder competition, non-identical distributions, and a very close (but still constant) approximation of the optimal revenue. It effectively shows that the only way to achieve a sufficiently good constant approximation of the optimal revenue is through a detailed understanding of bidders' valuation distributions. Our upper bound is constructive and applies in particular to a variant of the empirical Myerson auction, the natural auction that runs the revenue-maximizing auction with respect to the empirical distributions of the samples. To capture how our sample complexity upper bound depends on the set of allowable distributions, we introduce α-strongly regular distributions, which interpolate between the well-studied classes of regular (α = 0) and MHR (α = 1) distributions. We give evidence that this definition is of independent interest.