TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization

Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng Chau, C. Rudin, M. Seltzer
{"title":"TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization","authors":"Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng Chau, C. Rudin, M. Seltzer","doi":"10.1109/VIS54862.2022.00021","DOIUrl":null,"url":null,"abstract":"Given thousands of equally accurate machine learning (ML) models, how can users choose among them? A recent ML technique enables domain experts and data scientists to generate a complete Rashomon set for sparse decision trees-a huge set of almost-optimal inter-pretable ML models. To help ML practitioners identify models with desirable properties from this Rashomon set, we develop Tim-bertrek, the first interactive visualization system that summarizes thousands of sparse decision trees at scale. Two usage scenarios high-light how Timbertrek can empower users to easily explore, compare, and curate models that align with their domain knowledge and values. Our open-source tool runs directly in users' computational notebooks and web browsers, lowering the barrier to creating more responsible ML models. Timbertrek is available at the following public demo link: https: //poloclub. github. io/timbertrek.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Given thousands of equally accurate machine learning (ML) models, how can users choose among them? A recent ML technique enables domain experts and data scientists to generate a complete Rashomon set for sparse decision trees-a huge set of almost-optimal inter-pretable ML models. To help ML practitioners identify models with desirable properties from this Rashomon set, we develop Tim-bertrek, the first interactive visualization system that summarizes thousands of sparse decision trees at scale. Two usage scenarios high-light how Timbertrek can empower users to easily explore, compare, and curate models that align with their domain knowledge and values. Our open-source tool runs directly in users' computational notebooks and web browsers, lowering the barrier to creating more responsible ML models. Timbertrek is available at the following public demo link: https: //poloclub. github. io/timbertrek.
探索和管理稀疏决策树与交互式可视化
面对成千上万同样精确的机器学习(ML)模型,用户如何在其中进行选择?最近的一项机器学习技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon集——一组几乎最优的可解释机器学习模型。为了帮助机器学习从业者从罗生门集合中识别出具有理想属性的模型,我们开发了Tim-bertrek,这是第一个大规模总结数千个稀疏决策树的交互式可视化系统。两个使用场景突出了Timbertrek如何使用户能够轻松地探索、比较和管理与他们的领域知识和价值观相一致的模型。我们的开源工具直接运行在用户的计算笔记本电脑和网络浏览器中,降低了创建更负责任的机器学习模型的障碍。Timbertrek的公开演示链接如下:http://poloclub。github。io / timbertrek。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信