A generic database indexing framework for large-scale geographic knowledge graphs

Yuhan Sun, Mohamed Sarwat
{"title":"A generic database indexing framework for large-scale geographic knowledge graphs","authors":"Yuhan Sun, Mohamed Sarwat","doi":"10.1145/3274895.3274966","DOIUrl":null,"url":null,"abstract":"The paper proposes Riso-Tree, a generic indexing framework for geographic knowledge graphs. Riso-Tree enables fast execution of graph queries that involve spatial predicates (aka. GraSp). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. Riso-Tree first partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders magnitude faster execution time than its counterparts when executing GraSp queries on real knowledge graphs (e.g., WikiData).","PeriodicalId":325775,"journal":{"name":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274895.3274966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper proposes Riso-Tree, a generic indexing framework for geographic knowledge graphs. Riso-Tree enables fast execution of graph queries that involve spatial predicates (aka. GraSp). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. Riso-Tree first partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders magnitude faster execution time than its counterparts when executing GraSp queries on real knowledge graphs (e.g., WikiData).
大型地理知识图谱的通用数据库索引框架
本文提出了地理知识图谱的通用索引框架Riso-Tree。Riso-Tree支持快速执行涉及空间谓词(也称为空间谓词)的图形查询。掌握)。提出的框架通过预物化子图条目增强了经典的R-Tree结构。Riso-Tree首先根据图与空间子区域的连通性将图划分为子图。建议的索引通过基于物化子图信息有效地修剪遍历的顶点/边,从而允许快速执行GraSp查询。实验表明,当对真实知识图(例如WikiData)执行GraSp查询时,所提出的Riso-Tree的执行时间比其对应的执行时间快了两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信