Tlou Boloka, Gerrie Crafford, Windy Mokuwe, B. V. Eden
{"title":"Anomaly Detection Monitoring System for Healthcare","authors":"Tlou Boloka, Gerrie Crafford, Windy Mokuwe, B. V. Eden","doi":"10.1109/SAUPEC/RobMech/PRASA52254.2021.9377017","DOIUrl":null,"url":null,"abstract":"Most developing countries suffer from inadequate health care facilities and a lack of medical practitioners as most of them emigrate to developed countries. The outbreak of the COVID-19 pandemic has left these countries more vulnerable to facing the worse outcome of the pandemic. This necessitates the need for a system that continuously monitors patient status and detects how their physiological variables will change over time. As a result, it will reduce the rate of mortality and mitigate the need for medical practitioners to monitor patients continuously. In this work, we show how an autoencoder and extreme gradient boosting can be merged to forecast physiological variables of a patient and detect anomalies and their level of divergence. An accurate detection of current and future anomalies will enable remedial action to be taken by medical practitioners at the right time and possibly save lives.","PeriodicalId":442944,"journal":{"name":"2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most developing countries suffer from inadequate health care facilities and a lack of medical practitioners as most of them emigrate to developed countries. The outbreak of the COVID-19 pandemic has left these countries more vulnerable to facing the worse outcome of the pandemic. This necessitates the need for a system that continuously monitors patient status and detects how their physiological variables will change over time. As a result, it will reduce the rate of mortality and mitigate the need for medical practitioners to monitor patients continuously. In this work, we show how an autoencoder and extreme gradient boosting can be merged to forecast physiological variables of a patient and detect anomalies and their level of divergence. An accurate detection of current and future anomalies will enable remedial action to be taken by medical practitioners at the right time and possibly save lives.