Triplet Loss based Siamese Networks for Automatic Short Answer Grading

Nagamani Yeruva, Sarada Venna, Hemalatha Indukuri, Mounika Marreddy
{"title":"Triplet Loss based Siamese Networks for Automatic Short Answer Grading","authors":"Nagamani Yeruva, Sarada Venna, Hemalatha Indukuri, Mounika Marreddy","doi":"10.1145/3574318.3574337","DOIUrl":null,"url":null,"abstract":"Grading student work is critical for assessing their understanding and providing necessary feedback. However, answer grading can become monotonous for teachers. On the standard ASAG data set, our system shows substantial improvements in classification disparity of correct and incorrect answers from a reference answer compared to baseline methods. Our supervised model (1) utilizes recent advances in semantic word embeddings and (2) implements ideas from one-shot learning methods, which are proven to work with minimal. We present experimental results from a model based on different approaches and demonstrates decent performance on standard benchmark dataset.","PeriodicalId":270700,"journal":{"name":"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3574318.3574337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Grading student work is critical for assessing their understanding and providing necessary feedback. However, answer grading can become monotonous for teachers. On the standard ASAG data set, our system shows substantial improvements in classification disparity of correct and incorrect answers from a reference answer compared to baseline methods. Our supervised model (1) utilizes recent advances in semantic word embeddings and (2) implements ideas from one-shot learning methods, which are proven to work with minimal. We present experimental results from a model based on different approaches and demonstrates decent performance on standard benchmark dataset.
基于三重损失的Siamese网络自动简答评分
给学生作业评分对于评估他们的理解和提供必要的反馈至关重要。然而,对老师来说,评分可能会变得单调乏味。在标准ASAG数据集上,与基线方法相比,我们的系统在参考答案的正确和错误答案的分类差异方面有了实质性的改进。我们的监督模型(1)利用了语义词嵌入的最新进展,(2)实现了一次性学习方法的思想,这些方法被证明可以以最小的代价工作。我们给出了基于不同方法的模型的实验结果,并在标准基准数据集上展示了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信