A Comparative Study of Different Classification Techniques for Sentiment Analysis

Soumadip Ghosh, A. Hazra, A. Raj
{"title":"A Comparative Study of Different Classification Techniques for Sentiment Analysis","authors":"Soumadip Ghosh, A. Hazra, A. Raj","doi":"10.4018/ijse.20200101.oa","DOIUrl":null,"url":null,"abstract":"Sentiment analysis denotes the analysis of emotions and opinions from text. The authors also refer to sentiment analysis as opinion mining. It finds and justifies the sentiment of the person with respect to a given source of content. Social media contain vast amounts of the sentiment data in the form of product reviews, tweets, blogs, and updates on the statuses, posts, etc. Sentiment analysis of this largely generated data is very useful to express the opinion of the mass in terms of product reviews. This work is proposing a highly accurate model of sentiment analysis for reviews of products, movies, and restaurants from Amazon, IMDB, and Yelp, respectively. With the help of classifiers such as logistic regression, support vector machine, and decision tree, the authors can classify these reviews as positive or negative with higher accuracy values.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijse.20200101.oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sentiment analysis denotes the analysis of emotions and opinions from text. The authors also refer to sentiment analysis as opinion mining. It finds and justifies the sentiment of the person with respect to a given source of content. Social media contain vast amounts of the sentiment data in the form of product reviews, tweets, blogs, and updates on the statuses, posts, etc. Sentiment analysis of this largely generated data is very useful to express the opinion of the mass in terms of product reviews. This work is proposing a highly accurate model of sentiment analysis for reviews of products, movies, and restaurants from Amazon, IMDB, and Yelp, respectively. With the help of classifiers such as logistic regression, support vector machine, and decision tree, the authors can classify these reviews as positive or negative with higher accuracy values.
情感分析中不同分类技术的比较研究
情感分析是指从文本中分析情感和观点。作者还将情感分析称为意见挖掘。它根据给定的内容来源找到并证明人们的情绪。社交媒体以产品评论、推文、博客、状态更新、帖子等形式包含了大量的情感数据。对这些大量生成的数据进行情感分析对于表达大众对产品评论的意见非常有用。这项工作提出了一个高度精确的情感分析模型,分别来自亚马逊、IMDB和Yelp的产品评论、电影评论和餐馆评论。在逻辑回归、支持向量机和决策树等分类器的帮助下,作者可以以更高的准确率将这些评论分类为正面或负面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信