S. Di Meo, S. Morganti, L. Pasotti, M. Conti, M. Pasian, G. Matrone
{"title":"Preliminary Experimental Characterization of Gelatin-Based Tissue-Mimicking Materials for Realistic Breast Phantoms aimed at Microwave Applications","authors":"S. Di Meo, S. Morganti, L. Pasotti, M. Conti, M. Pasian, G. Matrone","doi":"10.23919/EMF-MED.2018.8526075","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most aggressive and common cause of death among women around the world, and an early diagnosis is fundamental to increase the survival chances. Microwave and mm-wave imaging systems have been recently proposed as a possible technique for cancer detection, on the grounds of the different dielectric permittivity between healthy and neoplastic tissues. To support the experimental development of such systems, phantoms able to mimic the different dielectric permittivity are required. In addition, the possibility to provide, at the same time, mechanical properties similar to those of real tissues would be beneficial to deliver phantoms as realistic as possible. In this paper, two simple and easy-to-produce mixtures able to mimic the dielectric properties of neoplastic breast tissue are presented; their dielectric properties are compared to the ones derived from human neoplastic ex-vivo samples and their mechanical properties are tested. In particular, two different percentages of gelling material are used and both the dielectric and mechanical material properties are measured, demonstrating the possibility to tune the Young’s module of the samples.","PeriodicalId":134768,"journal":{"name":"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EMF-MED.2018.8526075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Breast cancer is the most aggressive and common cause of death among women around the world, and an early diagnosis is fundamental to increase the survival chances. Microwave and mm-wave imaging systems have been recently proposed as a possible technique for cancer detection, on the grounds of the different dielectric permittivity between healthy and neoplastic tissues. To support the experimental development of such systems, phantoms able to mimic the different dielectric permittivity are required. In addition, the possibility to provide, at the same time, mechanical properties similar to those of real tissues would be beneficial to deliver phantoms as realistic as possible. In this paper, two simple and easy-to-produce mixtures able to mimic the dielectric properties of neoplastic breast tissue are presented; their dielectric properties are compared to the ones derived from human neoplastic ex-vivo samples and their mechanical properties are tested. In particular, two different percentages of gelling material are used and both the dielectric and mechanical material properties are measured, demonstrating the possibility to tune the Young’s module of the samples.