Two Theorems on the Robust Designs of a Kind of Uncoupled CNNs with Applications

Xiaojie Zhang, L. Min
{"title":"Two Theorems on the Robust Designs of a Kind of Uncoupled CNNs with Applications","authors":"Xiaojie Zhang, L. Min","doi":"10.1109/ICCCAS.2007.4348245","DOIUrl":null,"url":null,"abstract":"The cellular neural/nonlinear network (CNN) has become a new tool for image and signal processing, robotic and biological visions, and higher brain functions. The robust designs for CNN templates are one of the important issues for the practical applications of the CNNs. This paper sets up two new theorems for robust designs of a kind of uncoupled CNNs. The two theorems provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Four examples for detecting edges and corners in images are presented in order to illustrate the effectiveness of the methodology.","PeriodicalId":218351,"journal":{"name":"2007 International Conference on Communications, Circuits and Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Communications, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2007.4348245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The cellular neural/nonlinear network (CNN) has become a new tool for image and signal processing, robotic and biological visions, and higher brain functions. The robust designs for CNN templates are one of the important issues for the practical applications of the CNNs. This paper sets up two new theorems for robust designs of a kind of uncoupled CNNs. The two theorems provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Four examples for detecting edges and corners in images are presented in order to illustrate the effectiveness of the methodology.
一类非耦合cnn鲁棒性设计的两个定理及应用
细胞神经/非线性网络(CNN)已成为图像和信号处理、机器人和生物视觉以及高级脑功能的新工具。CNN模板的鲁棒性设计是CNN实际应用的重要问题之一。本文建立了一类非耦合cnn鲁棒性设计的两个新定理。这两个定理分别提供了参数不等式来确定实现规定的图像处理函数的参数间隔。为了说明该方法的有效性,给出了四个检测图像边缘和角的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信