{"title":"Towards Explainable Retrieval Models for Precision Medicine Literature Search","authors":"Jiaming Qu, Jaime Arguello, Yue Wang","doi":"10.1145/3397271.3401277","DOIUrl":null,"url":null,"abstract":"In professional search tasks such as precision medicine literature search, queries often involve multiple aspects. To assess the relevance of a document, a searcher often painstakingly validates each aspect in the query and follows a task-specific logic to make a relevance decision. In such scenarios, we say the searcher makes a structured relevance judgment, as opposed to the traditional univariate (binary or graded) relevance judgment. Ideally, a search engine can support searcher's workflow and follow the same steps to predict document relevance. This approach may not only yield highly effective retrieval models, but also open up opportunities for the model to explain its decision in the same \"lingo\" as the searcher. Using structured relevance judgment data from the TREC Precision Medicine track, we propose novel retrieval models that emulate how medical experts make structured relevance judgments. Our experiments demonstrate that these simple, explainable models can outperform complex, black-box learning-to-rank models.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In professional search tasks such as precision medicine literature search, queries often involve multiple aspects. To assess the relevance of a document, a searcher often painstakingly validates each aspect in the query and follows a task-specific logic to make a relevance decision. In such scenarios, we say the searcher makes a structured relevance judgment, as opposed to the traditional univariate (binary or graded) relevance judgment. Ideally, a search engine can support searcher's workflow and follow the same steps to predict document relevance. This approach may not only yield highly effective retrieval models, but also open up opportunities for the model to explain its decision in the same "lingo" as the searcher. Using structured relevance judgment data from the TREC Precision Medicine track, we propose novel retrieval models that emulate how medical experts make structured relevance judgments. Our experiments demonstrate that these simple, explainable models can outperform complex, black-box learning-to-rank models.