Image inpainting based on directional Gaussian graph model using multi-head reference

Zhonghao Zhang, Lihong Ma
{"title":"Image inpainting based on directional Gaussian graph model using multi-head reference","authors":"Zhonghao Zhang, Lihong Ma","doi":"10.1117/12.2631560","DOIUrl":null,"url":null,"abstract":"This paper aims to repair missing regions which are corrupted along arbitrary directions. It presents a mixed image inpainting method based on Markov random field. By using Belief Propagation scheme in low gray-levels and alternately suggesting a directional Gaussian Graphical model (DGGM) for multiple references in a high-level range, it gains a balance between the model accuracy and the computation complexity in realization. On the basis of an existing method in [1], it improves the method in high level inpainting for the task under small train sets and large corrupted regions, by introducing these multi-head reference clues. Experimental results are given, the inpainting quality of different kinds of images with different sizes and contents under different parameter settings are compared in metrics of the peak signal noise ratio and the structural similarity index. The significance of parameter settings and the efficient computational cost could demonstrate the feasibility of this method.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to repair missing regions which are corrupted along arbitrary directions. It presents a mixed image inpainting method based on Markov random field. By using Belief Propagation scheme in low gray-levels and alternately suggesting a directional Gaussian Graphical model (DGGM) for multiple references in a high-level range, it gains a balance between the model accuracy and the computation complexity in realization. On the basis of an existing method in [1], it improves the method in high level inpainting for the task under small train sets and large corrupted regions, by introducing these multi-head reference clues. Experimental results are given, the inpainting quality of different kinds of images with different sizes and contents under different parameter settings are compared in metrics of the peak signal noise ratio and the structural similarity index. The significance of parameter settings and the efficient computational cost could demonstrate the feasibility of this method.
基于多头参考的方向高斯图模型的图像绘制
本文的目的是修复沿任意方向损坏的缺失区域。提出了一种基于马尔可夫随机场的混合图像绘制方法。该算法通过在低灰度范围内使用信念传播(Belief Propagation)方案,并在高灰度范围内对多个参考点交替提出一种定向高斯图形模型(directional Gaussian Graphical model, DGGM),在模型精度和实现计算复杂度之间取得了平衡。在[1]现有方法的基础上,通过引入这些多头参考线索,改进了小训练集和大损坏区域下任务的高级喷漆方法。给出了实验结果,以峰值信噪比和结构相似指数为指标,比较了不同尺寸和内容的不同类型图像在不同参数设置下的喷漆质量。参数设置的重要性和高效的计算成本证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信