Large-scale uncertainty management systems: learning and exploiting your data

S. Babu, S. Guha, Kamesh Munagala
{"title":"Large-scale uncertainty management systems: learning and exploiting your data","authors":"S. Babu, S. Guha, Kamesh Munagala","doi":"10.1145/1559845.1559964","DOIUrl":null,"url":null,"abstract":"The database community has made rapid strides in capturing, representing, and querying uncertain data. Probabilistic databases capture the inherent uncertainty in derived tuples as probability estimates. Data acquisition and stream systems can produce succinct summaries of very large and time-varying datasets. This tutorial addresses the natural next step in harnessing uncertain data: How can we efficiently and quantifiably determine what, how, and how much to learn in order to make good decisions based on the imprecise information available. The material in this tutorial is drawn from a range of fields including database systems, control and information theory, operations research, convex optimization, and statistical learning. The focus of the tutorial is on the natural constraints that are imposed in a database context and the demands of imprecise information from an optimization point of view. We look both into the past as well as into the future; to discuss general tools and techniques that can serve as a guide to database researchers and practitioners, and to enumerate the challenges that lie ahead.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The database community has made rapid strides in capturing, representing, and querying uncertain data. Probabilistic databases capture the inherent uncertainty in derived tuples as probability estimates. Data acquisition and stream systems can produce succinct summaries of very large and time-varying datasets. This tutorial addresses the natural next step in harnessing uncertain data: How can we efficiently and quantifiably determine what, how, and how much to learn in order to make good decisions based on the imprecise information available. The material in this tutorial is drawn from a range of fields including database systems, control and information theory, operations research, convex optimization, and statistical learning. The focus of the tutorial is on the natural constraints that are imposed in a database context and the demands of imprecise information from an optimization point of view. We look both into the past as well as into the future; to discuss general tools and techniques that can serve as a guide to database researchers and practitioners, and to enumerate the challenges that lie ahead.
大规模不确定性管理系统:学习和利用您的数据
数据库社区在捕获、表示和查询不确定数据方面取得了快速进展。概率数据库将派生元组中的固有不确定性捕获为概率估计。数据采集和流系统可以生成非常大且随时间变化的数据集的简洁摘要。本教程介绍了利用不确定数据的自然下一步:我们如何有效和定量地确定要学习什么、如何学习以及学习多少,以便根据可用的不精确信息做出正确的决策。本教程中的材料来自一系列领域,包括数据库系统、控制和信息论、运筹学、凸优化和统计学习。本教程的重点是在数据库上下文中施加的自然约束,以及从优化的角度来看对不精确信息的需求。我们既展望过去,也展望未来;讨论可以作为数据库研究人员和从业者指南的通用工具和技术,并列举未来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信