On perturbation theory and an algorithm for maximal clique enumeration in uncertain and noisy graphs

U '09 Pub Date : 2009-06-28 DOI:10.1145/1610555.1610562
W. Hendrix, Matthew C. Schmidt, P. Breimyer, N. Samatova
{"title":"On perturbation theory and an algorithm for maximal clique enumeration in uncertain and noisy graphs","authors":"W. Hendrix, Matthew C. Schmidt, P. Breimyer, N. Samatova","doi":"10.1145/1610555.1610562","DOIUrl":null,"url":null,"abstract":"The maximal clique enumeration (MCE) problem can be used to find very tightly-coupled collections of objects inside a network or graph of relationships. However, when such networks are based on noisy or uncertain data, the solutions to the MCE problem for several closely related graphs may be necessary to accurately define the collections.\n Thus, we propose an algorithm that efficiently solves the MCE problem on altered, or perturbed, graphs. The algorithm utilizes the enumeration of a baseline graph and identifies only those maximal cliques that the perturbation adds and/or removes. We detail the algorithm and the underlying theory required to guarantee correctness. Further, we report average runtime speedups of 7 and 9 for our algorithm over traditional enumeration techniques in the cases of adding and removing edges, respectively, from graphs constructed from protein interaction data.","PeriodicalId":176906,"journal":{"name":"U '09","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U '09","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1610555.1610562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The maximal clique enumeration (MCE) problem can be used to find very tightly-coupled collections of objects inside a network or graph of relationships. However, when such networks are based on noisy or uncertain data, the solutions to the MCE problem for several closely related graphs may be necessary to accurately define the collections. Thus, we propose an algorithm that efficiently solves the MCE problem on altered, or perturbed, graphs. The algorithm utilizes the enumeration of a baseline graph and identifies only those maximal cliques that the perturbation adds and/or removes. We detail the algorithm and the underlying theory required to guarantee correctness. Further, we report average runtime speedups of 7 and 9 for our algorithm over traditional enumeration techniques in the cases of adding and removing edges, respectively, from graphs constructed from protein interaction data.
不确定和噪声图中最大团枚举的摄动理论和算法
最大团枚举(MCE)问题可用于在网络或关系图中找到非常紧密耦合的对象集合。然而,当这样的网络基于嘈杂或不确定的数据时,可能需要对几个密切相关的图的MCE问题的解决方案来准确定义集合。因此,我们提出了一种算法,可以有效地解决改变或扰动图上的MCE问题。该算法利用基线图的枚举,只识别扰动增加和/或去除的最大团。我们详细介绍了保证正确性所需的算法和基础理论。此外,我们报告了在从蛋白质相互作用数据构建的图中分别添加和删除边缘的情况下,我们的算法比传统枚举技术的平均运行速度提高了7和9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信