Mining opened frequent itemsets to generate maximal Boolean association rules

Baoqing Jiang, C. Han, Lingsheng Li
{"title":"Mining opened frequent itemsets to generate maximal Boolean association rules","authors":"Baoqing Jiang, C. Han, Lingsheng Li","doi":"10.1109/GRC.2009.5255112","DOIUrl":null,"url":null,"abstract":"Lots of association rules may be generated in the process of association rules minging. It leads to users hard to find important information they needed. The maximal Boolean association rules have the advantages that these rules contain a small number and don't lose the rules' information. Thereby it increased the efficiency of the users' analysis about the rules and saved the storage space. Opened frequent itemsets and closed frequent itemsets can be used to mine the maximal Boolean association rules. In this paper, we analyse the property of maximal Boolean association rules and propose an algorithm of mining opened frequent itemset. Finally, we verify this algorithm by an example.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Lots of association rules may be generated in the process of association rules minging. It leads to users hard to find important information they needed. The maximal Boolean association rules have the advantages that these rules contain a small number and don't lose the rules' information. Thereby it increased the efficiency of the users' analysis about the rules and saved the storage space. Opened frequent itemsets and closed frequent itemsets can be used to mine the maximal Boolean association rules. In this paper, we analyse the property of maximal Boolean association rules and propose an algorithm of mining opened frequent itemset. Finally, we verify this algorithm by an example.
挖掘打开的频繁项集,生成最大的布尔关联规则
在关联规则挖掘过程中,可能会产生大量的关联规则。它导致用户很难找到他们需要的重要信息。最大布尔关联规则具有规则数量少、不丢失规则信息的优点。从而提高了用户对规则分析的效率,节省了存储空间。打开频繁项集和关闭频繁项集可以用来挖掘最大布尔关联规则。本文分析了极大布尔关联规则的性质,提出了一种挖掘开频繁项集的算法。最后,通过实例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信