Modelling of submerged oscillating water columns with mass transfer for wave energy extraction

Sjors de Rooij, A. Laguna
{"title":"Modelling of submerged oscillating water columns with mass transfer for wave energy extraction","authors":"Sjors de Rooij, A. Laguna","doi":"10.1109/OSES.2019.8867314","DOIUrl":null,"url":null,"abstract":"Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.","PeriodicalId":416860,"journal":{"name":"2019 Offshore Energy and Storage Summit (OSES)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Offshore Energy and Storage Summit (OSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OSES.2019.8867314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.
含传质的水下振荡水柱波浪能提取模型
振荡水柱装置是一种非常重要的波能转换器,近年来得到了广泛的研究。虽然OWC的大多数设计都是基于浮在水面以上的或固定的结构,但人们对完全淹没的系统知之甚少,因为它可以减少环境载荷和简化结构设计。水下型谐振管由两个由堰和气室隔开的波纹管组成,而不是通常使用的单柱。在接近共振的条件下,水从第一柱流到第二柱,导致正流通过系统,水力涡轮机可以从中提取能量。虽然现有的工作已经研究了一个OWC的行为,但本文解决了两个水柱之间的动态相互作用,包括传质机制以及相关的动量变化。采用时域数值模型对系统在不同设计参数下的性能和响应进行了初步分析。该模型由一维质量和动量守恒方程推导而来,包括水动力效应、绝热空气可压缩性和涡轮诱导阻尼。初步结果表明,传质对共振放大和两柱运动之间的相位都有重要影响。给出了系统在不同堰高和规则波条件下的仿真结果。进一步的工作将继续在设计优化和实验验证提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信