{"title":"Microfabrication of a capacitive micromachined ultrasonic transducer (CMUT) with an internally sealed pivot","authors":"Donghwan Kim, M. Kuntzman, N. Hall","doi":"10.1109/ULTSYM.2014.0146","DOIUrl":null,"url":null,"abstract":"We present an unconventional capacitive micromachined ultrasonic transducer in which a vacuum-sealed cavity beneath a diaphragm layer is comprised of an internal beam that pivots and has a first rocking or rotational vibration mode and a second flapping mode of vibration. It is anticipated that the unique structure may find application in biologically-inspired ultrasound sensors that simultaneously detect omnidirectional sound pressure and pressure gradient. Vacuum sealing the cavity in which the pivoting beam resides eliminates squeeze-film damping that would otherwise cause excessive damping and/or stiffness. This paper presents scanning electron micrographs of successfully fabricated and sealed prototypes and dynamic frequency response measurements, which reveal a fundamental rocking mode of vibration at 480 kHz.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present an unconventional capacitive micromachined ultrasonic transducer in which a vacuum-sealed cavity beneath a diaphragm layer is comprised of an internal beam that pivots and has a first rocking or rotational vibration mode and a second flapping mode of vibration. It is anticipated that the unique structure may find application in biologically-inspired ultrasound sensors that simultaneously detect omnidirectional sound pressure and pressure gradient. Vacuum sealing the cavity in which the pivoting beam resides eliminates squeeze-film damping that would otherwise cause excessive damping and/or stiffness. This paper presents scanning electron micrographs of successfully fabricated and sealed prototypes and dynamic frequency response measurements, which reveal a fundamental rocking mode of vibration at 480 kHz.