Time Series Nowcasting of India’s GDP with Machine Learning

Nimisha Malik, Bhavik Agarwal
{"title":"Time Series Nowcasting of India’s GDP with Machine Learning","authors":"Nimisha Malik, Bhavik Agarwal","doi":"10.1109/ICAIoT57170.2022.10121883","DOIUrl":null,"url":null,"abstract":"The GDP forms an essential metric in assessing the state of the economy. However, the GDP figures are only available with a certain lag whereas economists need the data on a timely basis for accurate predictions of economic growth. Nowcasting helps in addressing this problem. This paper explores several machine learning (ML) algorithms in nowcasting the nominal quarterly GDP of India for the period 4Q2014 – 2Q2022. The algorithms are trained over a number of years using a wide range of high frequency macroeconomic and financial indicators and the results are then compared to the ones obtained using a traditional autoregressive model, Vector Autoregression (VAR). According to our results, Huber regression gave the least error i.e. 3.67 % while VAR gave an error of 15.89%. ML models outperformed VAR in terms of predictive accuracy while nowcasting India’s GDP. In this paper, analysis has been carried out on Python using the Pycaret library.","PeriodicalId":297735,"journal":{"name":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence of Things (ICAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIoT57170.2022.10121883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The GDP forms an essential metric in assessing the state of the economy. However, the GDP figures are only available with a certain lag whereas economists need the data on a timely basis for accurate predictions of economic growth. Nowcasting helps in addressing this problem. This paper explores several machine learning (ML) algorithms in nowcasting the nominal quarterly GDP of India for the period 4Q2014 – 2Q2022. The algorithms are trained over a number of years using a wide range of high frequency macroeconomic and financial indicators and the results are then compared to the ones obtained using a traditional autoregressive model, Vector Autoregression (VAR). According to our results, Huber regression gave the least error i.e. 3.67 % while VAR gave an error of 15.89%. ML models outperformed VAR in terms of predictive accuracy while nowcasting India’s GDP. In this paper, analysis has been carried out on Python using the Pycaret library.
机器学习对印度GDP的时间序列临近预测
国内生产总值是衡量经济状况的重要指标。然而,国内生产总值数据只有一定的滞后,而经济学家需要及时的数据来准确预测经济增长。临近预报有助于解决这个问题。本文探讨了2014年第四季度至2022年第二季度印度名义季度GDP的几种机器学习(ML)算法。算法经过多年的训练,使用广泛的高频宏观经济和金融指标,然后将结果与使用传统自回归模型向量自回归(VAR)获得的结果进行比较。根据我们的结果,Huber回归给出的误差最小,为3.67%,而VAR给出的误差为15.89%。ML模型在预测印度GDP的准确性方面优于VAR。本文使用Pycaret库对Python进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信