A cluster estimation method with extension to fuzzy model identification

S. Chiu, Rockwell
{"title":"A cluster estimation method with extension to fuzzy model identification","authors":"S. Chiu, Rockwell","doi":"10.1109/FUZZY.1994.343644","DOIUrl":null,"url":null,"abstract":"We present an efficient method for estimating cluster centers of numerical data. This method can be used to determine the number of clusters and their initial values for initializing iterative optimization-based clustering algorithms such as fuzzy C-means. Here were combine this cluster estimation method with a least squares estimation algorithm to provide a fast and robust method for identifying fuzzy models from input/output data. A benchmark problem involving the prediction of a chaotic time series shows this method compares favourably with other more compositionally intensive methods.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 163

Abstract

We present an efficient method for estimating cluster centers of numerical data. This method can be used to determine the number of clusters and their initial values for initializing iterative optimization-based clustering algorithms such as fuzzy C-means. Here were combine this cluster estimation method with a least squares estimation algorithm to provide a fast and robust method for identifying fuzzy models from input/output data. A benchmark problem involving the prediction of a chaotic time series shows this method compares favourably with other more compositionally intensive methods.<>
一种扩展到模糊模型辨识的聚类估计方法
提出了一种估计数值数据聚类中心的有效方法。该方法可用于确定聚类的数量及其初始值,用于初始化基于迭代优化的聚类算法(如模糊C-means)。本文将该聚类估计方法与最小二乘估计算法相结合,为从输入/输出数据中识别模糊模型提供了一种快速、鲁棒的方法。一个涉及混沌时间序列预测的基准问题表明,该方法优于其他更密集的组合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信