Increasing the Classification Accuracy of EEG based Brain-computer Interface Signals

G. Dimitrov, Pavel Petrov, I. Dimitrova, G. Panayotova, I. Garvanov, Olexiy Bychkov, E. Kovatcheva, P. Petrova
{"title":"Increasing the Classification Accuracy of EEG based Brain-computer Interface Signals","authors":"G. Dimitrov, Pavel Petrov, I. Dimitrova, G. Panayotova, I. Garvanov, Olexiy Bychkov, E. Kovatcheva, P. Petrova","doi":"10.1109/ACIT49673.2020.9208944","DOIUrl":null,"url":null,"abstract":"In the recent years the attention to Brain-Computer Interface (BCI) devices and their potential for decoding human brain signals have risen considerably. The achieved results find application in the spheres of medicine, Smart IoT, machinery management, automobiles etc. In this article our team research the impact of additional visual stimulation on the accuracy of the classification of human brain signals. Experimental data is obtained by using Emotiv Epoc 14+. The data is processed in OpenVibe platform. The results of the research show considerable quality improvement in classifier training when additional visual stimulation is introduced. This leads to improved accuracy of incoming signal classification when applied in practice.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9208944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the recent years the attention to Brain-Computer Interface (BCI) devices and their potential for decoding human brain signals have risen considerably. The achieved results find application in the spheres of medicine, Smart IoT, machinery management, automobiles etc. In this article our team research the impact of additional visual stimulation on the accuracy of the classification of human brain signals. Experimental data is obtained by using Emotiv Epoc 14+. The data is processed in OpenVibe platform. The results of the research show considerable quality improvement in classifier training when additional visual stimulation is introduced. This leads to improved accuracy of incoming signal classification when applied in practice.
提高基于脑机接口信号的脑电分类精度
近年来,人们对脑机接口(BCI)设备及其解码人脑信号的潜力的关注大大增加。所取得的成果在医疗、智能物联网、机械管理、汽车等领域得到了应用。在这篇文章中,我们的团队研究了额外的视觉刺激对人脑信号分类准确性的影响。实验数据由Emotiv Epoc 14+软件获取。数据在OpenVibe平台上进行处理。研究结果表明,当引入额外的视觉刺激时,分类器训练的质量有相当大的提高。在实际应用中,提高了输入信号分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信